

Portfolio website: Michael Hopwood

[image: _images/headshot_MH_2019_2.jpeg]
Hello, I am a PhD student at the University of Central Florida studying data science. I have worked on many data science and data analytics projects, all of which are summarized in my CV [https://github.com/MichaelHopwood/HopML/blob/main/docs/_static/MICHAEL_HOPWOOD_CV.PDF]. Summarized results of select journal papers, conference proceedings, hackathons, and personal projects are located in projects. For a more up-to-date list of my publications, see my google scholar [https://scholar.google.com/citations?hl=en&authuser=1&user=IpAk8_gAAAAJ].

Here’s my LinkedIn [https://www.linkedin.com/in/michael-hopwood-43ba97123/]; let’s connect!

An ongoing goal of mine is to capture some notes from my PhD and other studies. An abridged version of my PhD notes is captured in notes, which will continue to grow as I find time to transcribe them! The notes are a concatenation of lecture notes and online resources. I try to cite resources as often as I can but do not always.

This website was built to be a portfolio for others to see; however, perhaps more importantly, it functions as a platform for me to keep track of previous projects and my ongoing notes.

Content:

	Projects
	Exploring a link between network topology and active learning

	An assessment of the value of principal component analysis for photovoltaic IV trace classification of physically-induced failures

	Neural network-based classification of string-level IV curves from physically-induced failures of photovoltaic modules

	Physics-based method for generating fully synthetic IV curve training datasets for machine learning classification of PV failures

	pvOps: Improving Operational Assessments through Data Fusion

	Electric Vehicle Detection

	Generalized Low-Rank Models for Parking Garage Capacity Modeling

	Notes (Beta)
	Supervised Learning: An Introduction

	Discriminant Analysis

	Hidden Markov Models (HMM)

	NN Learning

	Network science

	Generative Adversarial Networks (GANs)

	Explainable AI

	Summaries

	A/B Tests

	Attention

	Common Questions

	Cross Entropy

	Regularization

	Theoretical Statistics

	Theoretical Statistics Questions

	Natural Language Processing

	Graph neural networks at scale

	Contextual Bandits

	Neural Network Gaussian Process (NNGP)

	Helpful Resources
	Cool Papers

Projects

Exploring a link between network topology and active learning [https://ieeexplore.ieee.org/document/9528662]

Active learning in graph neural networks can provide similar, if not better, results in a node classification task simply by ordering the input data in the training process. An ordering process is studied and an empirical rule-of-thumb is established to infer the best ordering based off the topology of the network. This work was formalized in a peer-review paper [https://www.mdpi.com/2078-2489/12/4/170] and a conference paper [http://icufn.org/wp-content/uploads/2021/08/ICUFN-2021-Final-Program-Version-Revised.pdf].

[image: _images/icufn2021_activelearning.png]

An assessment of the value of principal component analysis for photovoltaic IV trace classification of physically-induced failures [https://ieeexplore.ieee.org/document/9300601]

Utilizing PCA on Photovoltaic current-voltage (IV) curves improves the performance of a failure classification task. Observing the performance of a random forest classifier on point-wise classification shows better results where the IV curve profile more often contains failure trends. Thi work was presented at PVSC47 conference in 2020 and won best student presentation [https://github.com/MichaelHopwood/HopML/blob/main/docs/_static/pvsc47_ppt.pdf] and paper [https://ieeexplore.ieee.org/abstract/document/9300601].

[image: _images/pvsc47_pca_ML.png]

Neural network-based classification of string-level IV curves from physically-induced failures of photovoltaic modules [https://ieeexplore.ieee.org/abstract/document/9186596]

A classification task of photovoltaic failures using photovoltaic current-voltage (IV) curves is answered through neural networks, specifically a single-headed LSTM, multi-headed LSTM, and 1D CNN. Results show high accuracy (99%+) in the classification of three common failures which were physically induced in a real system. This study established a methodology which could be applied to a larger list of failures in more complicated systems. This work was formalized in a peer-review journal paper [https://ieeexplore.ieee.org/abstract/document/9186596].

[image: _images/ieeeaccess_iv_nn.png]

Physics-based method for generating fully synthetic IV curve training datasets for machine learning classification of PV failures

To circumvent having to induce failures in real systems for data collection (as done in the study above), a physics-based simulation framework is built. Results show no difference in a failure classification task (evaluated on measured data) when using simulations or real measured data in training. The code was released here [https://github.com/sandialabs/pvOps] and a paper is pending review from a journal.

[image: _images/ieeeaccess_simulation_iv_nn.png]

pvOps: Improving Operational Assessments through Data Fusion

Two (PVSC & AGU [https://ui.adsabs.harvard.edu/abs/2020AGUFMIN0140003H/abstract]) conference proceedings introduce a python package which preprocesses text (Operations and maintenance tickets) and time (timeseries meteorological and electrical) data for the purpose of better-informed knowledge retrieval. Data preprocessing steps were established for both types of data. Results show distributions of failure frequencies and failure impacts on system production.

[image: _images/pvsc48_pvops.png]

Electric Vehicle Detection

Through a competition with an energy utility provider, a detection task was conducted to identify whether a household had an electric vehicle (EV). Our results showed an accuracy of 82.4% which beat our competitor’s results (~70%). Outside of the data provided in the competition, we found data from the United Nations online which helped capture global trends in EV. Data smoothing and enemble models were conducted to establish the prediction. A white paper was written and submitted to the company which is covered by an NDA.

[image: _images/ouc2021_competition.png]

Generalized Low-Rank Models for Parking Garage Capacity Modeling

Participation in a Stanford hackathon for a few hours was conducted studying the parking capacity levels across different garages at UCF. A GLRM was built to summarize a model which best fit busy-day conditions that way deviations from this model would symbolize smaller-than-normal capacity given the time of day. Specifically, a set of regularization methods were adopted to minimize the construction loss where a busy day is mandated to be smooth, parabolic, and similar to other busy days. The results generated interesting garage-specific profiles; additionally, garage capacity changes due to covid were analyzed. The code [https://github.com/MichaelHopwood/UCFParkingAI] and paper [https://github.com/MichaelHopwood/HopML/blob/main/docs/_static/UCFParkingAI.pdf] are available online.

[image: _images/stanford_hackathon_parkingGarages.png]

Notes (Beta)

The notes on this website was written during my PhD in data science. Below are a list of topics.

	Supervised Learning: An Introduction
	Least-squares

	Nearest neighbors

	Bias-variance tradeoff

	Linear regression vs. kNN

	Interval prediction

	Review of Conditional Expectation

	Exercises

	Discriminant Analysis
	Overview

	Details

	Other notes

	Hidden Markov Models (HMM)
	Baum Welch

	NN Learning
	Useful Linear Algebra Identities

	Gradient layout

	Example on 1-layer NN

	Network science
	Components of complex systems

	Complexity Theory

	Anatomy

	Small World

	Universality

	Barabasi-Albert (BA) Model

	Generative Adversarial Networks (GANs)
	Thought experiment: GANs for explainable AI?

	Explainable AI

	Summaries
	ML & DL models

	Sampling

	Optimizers

	A/B Tests
	1. Set up the experiment

	2. Run the test and record the success rate for each group.

	3. Plot the distribution of the difference between the two samples.

	4. Calculate the statistical power.

	5. Evaluate how sample size affects A/B tests.

	Attention

	Common Questions
	Vectors

	Matrices

	Linear regression

	Dimensionality reduction

	Statistics

	Cross Entropy
	Negative log likelihood

	Regularization
	Ridge

	Lasso

	Shrinkage effect

	PCA

	Partial Least Squares

	Degrees of freedom

	Lasso

	Theoretical Statistics
	Probability Theory

	Transformations and Expectations

	Families of Distributions

	Multiple Random Variables

	Properties of Random Sample

	Principles of Data Reduction

	Point Estimation

	Bayes

	Theoretical Statistics Questions
	Is a pdf part of the exponential family?

	Is a statistic complete?

	Is a statistic sufficient?

	Is a statistic unbiased?

	Does a statistic converge in probability as \(n \xrightarrow{} \infty\)

	Find unique best unbiased estimator of \(\theta\).

	Find MLE

	Find MOM

	Find CRLB (variance bound)

	Find statistic at CRLB

	Best unbiased of \(\tau(\theta)\)

	Find an LRT of size 0.05

	Derive level \(\alpha\) UMP test of \(H_0\) and \(H_1\).

	Find a pivot quantity and its distribution

	Find a pivotal interval of \(\theta\) w/ confidence coeff \((1-\alpha)\)

	Find smallest pivotal interval with CI \((1-\alpha)\)

	Natural Language Processing

	Graph neural networks at scale
	Introduction

	GNN Scaling issues

	Solutions

	Recent solutions in literature

	Contextual Bandits
	Linear Bandits

	Real-World Setting: Delayed Feedback

	Conclusion

	Neural Network Gaussian Process (NNGP)
	Summary

	Definition

	Proposition

	Short proposition

	Proof

	Acknowledgements

Supervised Learning: An Introduction

Least-squares

The assumption is that \(f(X) = E(Y|X)\) is linear.

Here, \(X \in R^{n \times (p+1)}\) where the extra parameter is a column of ones for the intercept \(\beta_0\).

We assume that \(Y = E(Y|X) + \epsilon\) where \(\epsilon\) captures the tangents not captured by the predictors (e.g. noise) and \(\epsilon \sim N(0, \sigma_{\epsilon}^2)\) independent from \(X\).

\[\hat{Y} = \hat{\beta_0} + \sum_{i=1}^n X_{i} \hat{\beta_j} = X^T \hat{\beta}\]

Where the \(\beta_0\) term is the model bias. The gradient \(f^\prime(X) = \beta\) is a vector in input space that points in the steepest uphill direction. To fit the model, a (simple) method is least squares. Here, we pick coefficients \(\beta\) to minimize the residual sum of squares

\[RSS(\beta) = \sum_{i=1}^n (y_i - x_i^T \beta)^2\]

which shows a quadratic function of the parameters. Therefore, a minimum always exists but may not be unique. In matrix notation,

\[RSS(\beta) = (y - X \beta)^T (y - X \beta)\]

where X is an \(N \times p\) matrix with each row a sample, and y is an N-vector of the outputs in the training set. Differentiating w.r.t. \(\beta\) we get the normal equations

\[X^T (y - X \beta) = 0\]

If \(X^T X\) is nonsingular (i.e. invertible, \(AB = BA = I\)), then the unique solution is given by

\[\hat{\beta} = (X^T X)^{-1} X^T y\]

The projection matrix (or hat matrix) \(H=X(X^T X)^{-1} X^T\). Our observation \(y\). We estimate \(\hat{y}\). The best we can do is find the projection of \(y\) on the \(X\) space.It should happen that the residual (vertical projection axis) should be indpeendent of \(\hat{y}\) because the best linear prediction will have no systematic bias. The length of the residual is longer than the current \(y\).

Error is \(y - \hat{y} = (I - H)Y\). We must check whether

\[Cov[(Y-\hat{Y})Y^T] = E[(I-H)(Y-EY)]\]

Because we know \(E[Y|X] = XB + \epsilon\),

\[= E[(I-H)\epsilon \epsilon^T H]\]

Because \(\epsilon \epsilon^T = \sigma_{\epsilon}^2 I\), we conclude that

\[=[H - HH]\]

We know $HH = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T = X(X^T X)^{-1} X^T $

Projecting \(y\) to the space that is orthogonal to the \(X\) plane is defined by \(I-H\). When we multiply this times \(H\), we get \(H-HH = 0\).

If given a new input, then the same thing applies.

We know \(RSS\) increases with degrees of freedom, so we use residual stnanard error (RSE) instead:

\[RSE = \sqrt{\frac{RSS}{N - (p + 1)}}\]

This is an unbiased estimator: \(\sigma_{\epsilon}^2 = \frac{RSS}{N - (p+1)} = RSE^2\)

Therefore, a solution for the best \(\beta\) can be found without iteration.

A “poor man’s” classifier can use linear regression and predict \(1(\hat{Y} > 0.5)\). Ideally, we would like to estimate \(P(Y=1|X=x)\)

Additionally,

Because \(tr(AB) = tr(BA)\), we know \(tr(H) = tr(X(X^T X)^{-1} X^T) = tr((X^T X)^{-1} X^T X) = tr(I p + 1) = p + 1\). To understand residuals, we can understand how bad an outlier is.

\(Var(\hat{\epsilon}) = Var(y - \hat{y}) = (1 - H) \hat{\sigma}_\epsilon^2\)

\(Var(\hat{\epsilon}_i) = (1 - h_i) \hat{\sigma}_\epsilon^2\). This grants \(H\) an important role to calculate variance of residuals. If we have a large \(h_i\) then the residual has to have a small variance. This is called leverage.

For simple linear regression (p=1), \(h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum_j (x_j - \bar{x})^2}\). Where the ratio \(\frac{(x_i - \bar{x})^2}{\sum_j (x_j - \bar{x})^2}\) is the variance, which is always between 0 and 1.

We can standardize the epsilon by the variance (resulting in a t-distribution).

A large \(r_i\), . For instance if \(r_i = -2.5\), then the point is at 2.5 percent tail. A large \(r_i\) is an outlier.

Cook’s distance shows the model evaluation when if the model did not use a specific sample.

\[D_i = \frac{(\mathbf{\hat{y}} - (\mathbf{\hat{y}}_{(i)})}{FILL}\]

As shown here, an influential point must have high leverage and a high standard residual. We call this influence, as in it has a large influence on the final model.

On a plot of sqrt of standardized residuals vs fitted values, if you see a nonlinear pattern, then you may want to transform. The constant residual assumption. Consider transforming X instead of Y. (If you have heteroscedasticity, consider transforming Y). https://stats.stackexchange.com/questions/116486/why-y-should-be-transformed-before-the-predictors

On a plot of standradized rewiduals vs leverage, If near contour, the corresponding cooke’s distance will be 0.5. If you observe a point outside 1, then it’s a very influential point. If 0.5 to 1, it’s influential but not as extreme.

How do we evaluate our linear model?

We use the residual sum of errors (RSE): the smaller the better. This depends on the unit and scale of the response.

\(R^2\) instead measures the proportion of variance explained by regression.

We can only assume that all of the Ys are IID, so in this case, we get a horizontal line (at the mean). the total variability not explained by the model

\(SSE\) (or \(RSS\)), as described above, measures from the data point to the regression line. the total variability explained by the model. (\(=SST - SSR\))

\(SSR\) measures from the regression line to the mean (horizontal line).

\(SST\) measures from the data point to the mean, defines the total variability in your dataset

We know that \(SST = SSE + SSR\).

\(R^2\) (r-squared, r squared) measures the proportion of variability which can be explained by the model.

\[R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}\]

For simple linear regression, \(Y = \beta_0 + \beta_1 X + \epsilon\), \(R^2 = r^2\), where \(r\) is the pearson correlation. The pearson correlation coefficient is

\[r = \frac{\hat{CoV}(X,Y)}{\hat{StDev}(X)\hat{StDev}(Y)}\]

It measures how strong X and Y are correlated, and is in range [-1,1].

Question: Can we get \(F\)-statistic from \(R^2\)?

Yes. We know \(n\) (number of samples), \(p\) is number of parameters. We know $y =

Statistical Inference

A random sample \(X_1, X_2, ..., X_n\) be i.i.d., a statistic \(T = T(X_1, X_2, ..., X_n)\) is a function of the random sample. Let’s say this is the mean. The estimator \(\hat{\theta} = \hat{\theta}(X_1, X_2, ..., X_n)\). Our hypothesis could be to conclude if \(H_0 : \theta = \theta_0\) (two-sided).

There are two types of errors (type 1 and type 2).

p-value: Probability obtaininga value of statistic more extreme than the observed value \(H_0\). This mimics type 1 error.

Confidence interval: \(CI(X_1, X_2, ..., X_n)\) interval constructed from the random sample such that \(PR(\theta \in CI(X_1, X_2, ..., X_n)) = 1 - \alpha\). The narrower the confidence is, the more specific the estimation, given a pre-specified confidence level.

Common distributions

If \(Z_i \sim N(0,1)\), i.i.d. then \(\sum_i Z_i^2 \sim \chi_n^2\) where \(n\) is the number of RVs.

If \(Z \sim N(0,1)\) and \(W \sim \chi_n^2\) and they are independent then \(frac{Z}{\sqrt{W/n}} \sim t_n\). For instance, the ratio of the \(\bar{x}\) and sample standard deviaiton \(s^2\)

If \(W_1 \sim \chi_n^2\) and \(W_2 \sim X_m^2\) adn they are independent then \(F_{n,m}\). For instance if SSE / SSR is large enough.

Significance t-tests of coefficients

Check importance of the coefficients. Generally, if \(\beta_j = 0\), then we say that the predictors are not aiding the model’s prediction abilities.

\(H_0 : \beta_j = 0\) and \(H_1: \beta_j \neq 0\)

Note \(\hat{\beta} = (X^T X)^{-1} X^T (X \beta + \epsilon)\)

Given \(X\), \(\hat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma_\epsilon^2)\). The expected value is therefore: \(\beta\).

Also, \(Cov(\hat{\beta}, \hat{\beta}) = E[(\hat{\beta} - \beta) (\hat{\beta} - \beta)^T]E(Y|X) = X\beta\)

The Z-score for each \(\hat{\beta_j}\) is

\[z_j = \frac{\hat{\beta_j}}{\hat{\sigma}_{\hat{\beta}}} = \frac{}{}\]

Under null (\(\hat{\beta} = 0\)), we should get \(z_j \sim t_{N-p-1}\).

More goodness of fit

Bringing in more predictors will reduce SSE naturally (and increase \(R^2\)). Instead, we can do a hypothesis test.

SSR is independnet of SSE. We define the F-statistic

\[F = \frac{SSR/p}{SSE/(N-p-1)}\]

then \(F \sim F_{p, N-p-1}\). The p-value is \(Pr(F_{p,N-p-1} \geq F)\). If large F then reject.

There are two parameters to define a line (an intercept and a slope), so if have more predictors (p) then you will have \(p\) degrees of freedom for SSR. Residual has \(p\) predictors and \(1\) y-intercept.

Question: Is t-test and f-test equivalent for simple linear regression?

Answer: Yes!

Nearest neighbors

For regression, calculates average values of the \(k\) nearest neighbors. This replaces the expected value (in normal regression) with the sample average. For classification, a majority vote is conducted.

\[\hat{y} = \frac{1}{k} \sum_{x_i \in N_k(x)} y_i\]

If large number of variables, it’ll require a larger number \(k\). If kept same, then smaller number of neighbors will be included (Curse of dimensionality). Increased number of features, the definition of the neighborhood will also have to expand. The bias increases. This is because as you add another feature, it’ll inherently make the points be further apart.

Also, as you increase \(k\), a smoother surface will be formed (i.e. reduced variance).

The best \(k\) can be found empirically.

Bias-variance tradeoff

For a fixed \(x_0\),

\[E [\hat{f}(x_0) - f(x_0)] ^2 = E[\hat{f}(x_0) - E\hat{f}(x_0) + E\hat{f}(x_0) - \hat{f}(x_0)]^2\]

\[= E[\hat{f}(x) - E\hat{f}(x_0)]^2 + [E\hat{f}(x_0) - f(x_0)]^2 + 2 E\hat{f}(x_0) - f(x_0) E[\hat{f}(x_0) - E\hat{f}(x_0)]\]

We know that \(E[\hat{f}(x_0) - E\hat{f}(x_0)] = 0\). Therefore,

\[Var(\hat{f}(x_0)) + bias(\hat{f}(x_0)^2\]

There is no bias if \(k=1\) in nearest neighbor analysis. Small \(k\) is small bias but high variance. Large \(k\) is the summation over \(n\) so benefiting from Variance (because for sample variance, there is a \(\frac{1}{n}\) term) will be low but bias will be high.

Linear regression vs. kNN

Linear regression has high bias (linear assumption can be violated) but only needs to estimate p+1 parameters.

kNN uses \(\frac{n}{k}\) parameters but is flexible and adaptive. It is small bias but large variance.

Interval prediction

Confidence interval

A confidence interval of \(f(X) = \sum_{j=0}^p \beta_j x_j\) for given \(x=(x_0,...,x_p)^T\) is

\[f(X) \pm \hat{t}_{n-p-1, \alpha/2} \sigma_{\epsilon} \sqrt{\vec{x}^T (X^T X)^{-1} \vec{x})}\]

Why? Hint: What is the distribution of \(\vec{x}^T \hat{\beta}\), where \(\vec{x} = (x_0=1, x_1, ..., x_p)^T\)?

Prediction interval

A confidence interval of \(y = \sum_{j=0}^p \beta_j x_j + \epsilon\) for given \(x=(x_0,...,x_p)^T\) is

\(\sum(\beta_j x_j - \hat{\beta}_j x_j)\). The CI of \(\beta_j x_j\) is calculated above.

This is the same as $y - \hat{y} = y - \sum `:nbsphinx-math:hat{beta}`_j x_j = \epsilon `+ :nbsphinx-math:sum :nbsphinx-math:beta`_j x_j \sum `:nbsphinx-math:hat{beta}`_j x_j $

Review of Conditional Expectation

The conditional expected value is just the expectation when X is specified.

\[E(Y|X=x) = \int_{y} y dF(y|X=x) = \int_y y f_{y|X}(y|x) dy\]

Conditional expectation is a random variable. Without specificing \(X=x\), \(E(Y|X)\) is a function of \(X\). Because \(X\) is a RV, then \(E(Y|X)\) is also RV.

Tower property: \(E(Y) = E[E(Y|X)]\).

We say that \(X\) takes a fixed value such as \(x_0 = 0\), then \(g(x_0)\) is deterministic (i.e. not random). Its form may be unknown, or involves unknown parameters, e.g.

Example

\(Y = a X^2 + \epsilon\), \(\epsilon\) ind \(X\), \(\epsilon \sim N(0,1)\)

\(E(Y|X) = E(c + X^2 + \epsilon | X) = c + X^2 + E(\epsilon|X) = c + X^2\) where \(E(\epsilon|X)=0\)

Example

\(Y = X^2 + 10X + 20 + \epsilon\)

where \(\epsilon \sim N(0, 3)\) and \(X \sim N(30,10)\)

\[\begin{split}\begin{bmatrix}
X\\
Y\\
\end{bmatrix} = N(
\begin{bmatrix}
\mu_x & \sigma_x^2 + \sigma_{xy}^2\\
\mu_y & \sigma_{xy} + \sigma_x^2
\end{bmatrix}
)\end{split}\]

In this case, we know the underlying probability model.

The joint distribution gives a lot of information!

We can evalaute for the best model \(f\) by minimizing a loss function (i.e. \(L(Y, f(X)) = Y - f(X))^2\))

\[EPE(f) = E L(Y, f(X)) = E(Y - f(X))^2 = \int [y - f(x)]^2 Pr(dx, dy)\]

Because we have assumed that we know the joint distribution (and it’s all continuous), then we evaluate an integral.

The best f is E(Y|X=x)

^ This depends on your loss function! (using squared loss!) If you use L1 then your best \(f\) will be at the median. Squared loss is better because can take derivative of it. However, it can be influenced by extreme values.

\[EPE(f) = E(Y - f(X))^2 = E[E[(Y - f(x)]^2 | X)]\]

Minimize \(E[(Y - f(x)]^2 | X)\) for every X. This can be decomposed

\[E[(Y - f(x)]^2 | X) = E[[Y - E(Y|X) + E(Y|X) - f(X)]^2 | X]\]

With \(A = Y - E(Y|X)\) and \(B = E(Y|X) - f(X)\)

\[= E(A^2 | X) + E(B^2 | X) + 2 E(A \times B | X)\]

We know that at a given \(X\), \(A \times B\) is a constant.

\[= [E[Y|X] - f(X)] [E(Y|X) E[Y|X]]\]

Therefore, \(EPE(f) = EPE(E(Y|X)) + B\)

If the population is known, then \(f(x) = \int y f_{Y|X} (y|x) dy\) simply. This is the ideal case where you have population. However, this is rare.

For Example, if \(Y\) is a known funtion of \(X\) (with some error), then you know the conditional distribution. From this, you can estimate \(f\) as the mean of that conditional distribution.

Categorical classification

Loss matrix can be used to penalize categories heavier.

For example, in stock market prediction, we may place a heavier scaler on the loss function for when the stock market

Popular choice: \(L = 1_{K \times K} - I_K\) forms a matrix of ones except for zeros in the diagonal (because no update should be made if it is correct). This can also be expressed as \(L(G, \hat{G}(X)) = I(G \neq \hat{G}(X))\).

The solution that minimizes the EPE is \(\hat{G}(x) = arg max_g Pr_{G|X} (g|x)\). The group that maximizes the conditional probability \(Pr_{G|X}(g|x)\). This is called the bayes classifier. Its error is called the bayes rate. The group has a prior (original) distribution. For example, increasing and decreasing is equally likely. According to yesterday’s information, update and calculate posterior probability \(Pr_{G|X}(g|x)\).

Example

Generate \(X|G \sim N(\mu_G, I_2)\) where two centers are defined: \(\mu_1 = (0,1)^T, \mu_2 = (1,0)^T\)

Because this was generated, we know the labels: \(G_{1}, ..., G_{100} = 1\) and \(G_{101}, ..., G_{200} = 2\).

The bayes classifier is found by assuming the joint distribution \(X|G \sim N(\mu_G, I_2)\). Therefore, each group is equally likely. The boundary between these two groups is found by

$E(1(G|X)) = P(G=1|x_0) $ versus \(P(G=2|x_0)\) and the larger one is chosen for the point.

At the beginning, \(P(G=1) = P(G=2) = 0.5\).

At a sample located at \(\vec{X} = (10,9)\), the expectation can be evaluated by \(P(G_j = 1 | x_0 = (10,9)) = f(x_0 = (10,9)) = \frac{f(x_0 = (10,9) | G=1)}{f_x((10, 9))}\)

\(f_{N(0,1)}(x_0, x_1)\) is the double normal distribution (a function of X2 and X1).

So plug in the likelihood of observing the X multiplied by the given distribution (per bayesian rule). Bayes rule finds the ratio of the joint probability

\[= \frac{f(x_0 | \mu_1) \times P(G=1 | x_0)}{f(x_0 | \mu_1) \times P(G=1 | x_0) + f(x_0 | \mu_2) \times P(G=2 | x_0)}\]

Linear regression

\[RSS(\beta) = \sum_{i=1}^N (y_i - f(x_i))^2 = \sum_{i=1}^N (y_i - \beta_0 - \sum)^2\]

With a feature \(p=1\), what is the estimated \(\beta\)?

Solution: Take the derivative and then set equal to zero. RSS will have a minimum.

\(RSS(\beta_0, \beta_1) = y - X\beta\)

Exercises

Exercise: Suppose each of \(K\)-classes has an associated target \(𝑡_𝑘\), which is a vector of all zeros, except a one in the \(k\)th position. Show that classifying to the largest element of \(\hat{y}\) amounts to choosing the closest target, \(min_{k} ||t_k - \hat{y}||\), if the elements of \(\hat{y}\) sum to one.

Proof:

\[\begin{split}T = \begin{bmatrix}
1 & 0 & \dots & 0\\
0 & 1 & \dots & 0\\
0 & 0 & \dots & 1\\
\end{bmatrix}\end{split}\]

where \(t_k \in T\).

The model predicts \(Pr(y_i = t_k)\) where

\[min_k ||t_k - \hat{y} || = min_k \sum_{i=1}^K (t_{k,i} - y_i)^2 = min_k \sum_{i=1}^K t_{k,i}^2 - 2 t_{k,i} y_i + y_i^2\]

For the first term, when \(k=i\), the quantity equals 1 else it is 0. Thus, $:nbsphinx-math:sumi t{k,i}^2 = 1 for all values of \(k\). Likewise, the last term of \(\sum_i y_i^2\) is independent of \(k\) so that it is constant wrt \(k\). Finally, the middle term $:nbsphinx-math:sumi -2 t{k,i} y_i = -2 y_i when \(k=i\) and is 0 otherwise. Note that it also varies across different values of \(k\) so that it is a function of \(k\). Then, we can
rewrite the above function as a function of only the middle term as follows:

\[min_k ||t_k - \hat{y} || = min_k \sum_{i=1}^k -2 t_{k,i} y_i \xleftrightarrow{} min_k (-y_k)\]

Multiplying the above quantity by (-1), we can change the min to a max problem.

\[min_k ||t_k - \hat{y} || = max_k y_k\]

Therfore, we state that the largest element in \(\hat{y}\) is the closest target.

Excercise: Show how to compute the bayes decision boundary for the simulation example in Figure 2.5

[6]:

from utils import disp
disp('bayes_decision_boundary.png')

[image: ../_images/nblinks_intro_supervised_6_0.png]

Proof:

Above, we see two classes, generated by a mixture of Gaussians. Our generating density is \(N(m_k, I / 5)\) is a weighted sum of 10 Gaussians generated from \(N((0,1)^T, I)\).

Bayes classifier says that we classify to the most probable class using the conditional distribution \(Pr(G|X)\). Hence, the decision boundary is the set of points that partitions the vector space into two sets: one for each class. On the decision boundary itself, the output label is ambiguous.

Boundary = \(\{ x: max_{g \in G} Pr(g | X=x) = max_{k\in G} Pr(k | X=x)\}\)

It is the set of points where the most probable class is tied between two or more classes.

In the case of two examples,

Boundary = \(\{ x: Pr(g|X=x) = Pr(k|X=x)\} = \{ x: \frac{Pr(g|X=x)}{Pr(k|X=x)} = 1 \}\)

We can rewrite the above quantity by Bayes rule as follows:

\(\frac{Pr(g|X=x)}{Pr(k|X=x)} = \frac{Pr(X=x|g) Pr(g) / Pr(X=x)}{Pr(X=x|k) Pr(k) / Pr(X=x)} = \frac{Pr(X=x | g) Pr(g)}{Pr(X=x|k) Pr(k)} = 1\)

because we have 100 points in each class, so \(Pr(g) = Pr(k)\). The boundary becomes \(\{x: Pr(X=x|g) = Pr(X=x|k) \}\). We know \(Pr(X=x|g)\) because we know the generating density is gaussian. So,

\[Pr(X=x|g) = \Pi_{k=1}^{10} \frac{1}{5 \sqrt{2 \pi}} \exp (- \frac{(x - m_k)^2}{2 \times 25})\]

We take the log to ensure a monotonic function

\[\ln(Pr(X=x|g)) = \sum_{k=1}^{10} \ln(\frac{1}{5 \sqrt{2 \pi}}) - \frac{(x - m_k)^2}{2 \times 25}\]

Equating class \(g\) and \(k\) to get the decision boundary, we get

Boundary = \(\{ x: \sum_{k=1}^{10} \ln(\frac{1}{5 \sqrt{2 \pi}}) - \frac{(x - m_k)^2}{2 \times 25} = \sum_{k=1}^{10} \ln(\frac{1}{5 \sqrt{2 \pi}}) - \frac{(x - n_i)^2}{2 \times 25} \}\)

The observations of cluster 1 (\(m_k\)) and cluster 2 (\(n_i\)) help generate the exact boundary.

[7]:

import numpy as np
import pandas as pd

class KNearestNeighbors():
 def __init__(self, X_train, y_train, n_neighbors=5, weights='uniform'):

 self.X_train = X_train
 self.y_train = y_train

 self.n_neighbors = n_neighbors
 self.weights = weights

 self.n_classes = len(np.unique(y_train))

 def euclidian_distance(self, a, b):
 return np.sqrt(np.sum((a - b)**2, axis=1))

 def kneighbors(self, X_test, return_distance=False):

 dist = []
 neigh_ind = []

 point_dist = [self.euclidian_distance(x_test, self.X_train) for x_test in X_test]

 for row in point_dist:
 enum_neigh = enumerate(row)
 sorted_neigh = sorted(enum_neigh,
 key=lambda x: x[1])[:self.n_neighbors]

 ind_list = [tup[0] for tup in sorted_neigh]
 dist_list = [tup[1] for tup in sorted_neigh]

 dist.append(dist_list)
 neigh_ind.append(ind_list)

 if return_distance:
 return np.array(dist), np.array(neigh_ind)

 return np.array(neigh_ind)

 def predict(self, X_test):

 if self.weights == 'uniform':
 neighbors = self.kneighbors(X_test)
 print(neighbors)
 y_pred = np.array([
 np.argmax(np.bincount(self.y_train[neighbor]))
 for neighbor in neighbors
])

 return y_pred

 if self.weights == 'distance':

 dist, neigh_ind = self.kneighbors(X_test, return_distance=True)

 inv_dist = 1 / dist

 mean_inv_dist = inv_dist / np.sum(inv_dist, axis=1)[:, np.newaxis]

 proba = []

 for i, row in enumerate(mean_inv_dist):

 row_pred = self.y_train[neigh_ind[i]]

 for k in range(self.n_classes):
 indices = np.where(row_pred == k)
 prob_ind = np.sum(row[indices])
 proba.append(np.array(prob_ind))

 predict_proba = np.array(proba).reshape(X_test.shape[0],
 self.n_classes)

 y_pred = np.array([np.argmax(item) for item in predict_proba])

 return y_pred

 def score(self, X_test, y_test):
 y_pred = self.predict(X_test)

 return float(sum(y_pred == y_test)) / float(len(y_test))

data = np.array(
 [
 [0,3,0,1],
 [2,0,0,1],
 [0,1,3,1],
 [0,1,2,0],
 [1,0,1,0],
 [1,1,1,1]
]
)

X = data[:,0:3]
y = data[:,-1]

k = 3
knn = KNearestNeighbors(X,y,n_neighbors=k)
knn.predict([[0,0,0]])

[[4 5 1]]

[7]:

array([1], dtype=int64)

[10]:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

np.random.seed(1234)

alpha = 0.95
cov = [[1, 0], [0, 1]] # diagonal covariance

mean0 = np.array([0, 1])
x, y = np.random.multivariate_normal(mean0, cov, 100).T
plt.plot(x, y, 'o', color='orange', label='G=0', alpha=0.6)

mean1 = np.array([1, 0])
x2, y2 = np.random.multivariate_normal(mean1, cov, 100).T
plt.plot(x2, y2, 'bo', label='G=1', alpha=0.6)

plt.axis('equal')
plt.legend()
plt.xlabel(r'X_1')
plt.ylabel(r'X_2')
plt.grid('..')
plt.show()

X = np.append(np.column_stack((x,y)), np.column_stack((x2,y2)), axis=0)
Y = np.append(np.zeros(len(x)), np.ones(len(x2))).astype(float)

nneighbors = [1,10,20,100]

accs = []
for n in nneighbors:
 neigh = KNeighborsClassifier(n_neighbors=n)
 neigh.fit(X, Y)
 yhat = neigh.predict(X)
 acc = accuracy_score(Y, yhat)
 accs.append(1 - acc)

plt.plot(nneighbors, accs, 'o-')
plt.xlabel(r'k neighbors')
plt.ylabel('Error rate')
plt.show()

plt.plot(x, y, 'o', color='orange', label='G=0', alpha=0.6)
plt.plot(x2, y2, 'bo', label='G=1', alpha=0.6)

plt.axis('equal')
plt.legend()
plt.xlabel(r'X_1')
plt.ylabel(r'X_2')
plt.grid('..')

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
lda = LinearDiscriminantAnalysis()
lda_object = lda.fit(X, Y)

print('m', lda_object.coef_)
print('b', lda_object.intercept_)

x1 = np.array([np.min(X[:,0], axis=0), np.max(X[:,0], axis=0)])

i = 0
c = 'r'
b, w1, w2 = lda.intercept_[i], lda.coef_[i][0], lda.coef_[i][1]
print(b, w1, w2)
y1 = -(b+x1*w1)/w2
plt.plot(x1,y1,c=c)

plt.xlim(-3,3)
plt.ylim(-4,4)
plt.show()

[image: ../_images/nblinks_intro_supervised_9_0.png]

[image: ../_images/nblinks_intro_supervised_9_1.png]

m [[1.15981357 -0.59760123]]
b [-0.43829084]
-0.4382908386736625 1.1598135678848691 -0.5976012319170687

[image: ../_images/nblinks_intro_supervised_9_3.png]

[16]:

import collections
import numpy as np
from numpy import sqrt, exp

def pre_prob(y):
 y_dict = collections.Counter(y)
 pre_probab = np.ones(2)
 for i in range(0, 2):
 pre_probab[i] = y_dict[i]/y.shape[0]
 return pre_probab

def mean_var(X, y):
 n_features = X.shape[1]
 m = np.ones((2, n_features))
 v = np.ones((2, n_features))

 n_0 = np.bincount(y)[np.nonzero(np.bincount(y))[0]][0]

 x0 = np.ones((n_0, n_features))
 x1 = np.ones((X.shape[0] - n_0, n_features))

 k = 0
 for i in range(0, X.shape[0]):
 if y[i] == 0:
 x0[k] = X[i]
 k = k + 1
 k = 0
 for i in range(0, X.shape[0]):
 if y[i] == 1:
 x1[k] = X[i]
 k = k + 1

 for j in range(0, n_features):
 m[0][j] = np.mean(x0.T[j])
 v[0][j] = np.var(x0.T[j])*(n_0/(n_0 - 1))
 m[1][j] = np.mean(x1.T[j])
 v[1][j] = np.var(x1.T[j])*((X.shape[0]-n_0)/((X.shape[0]
 - n_0) - 1))
 return m, v # mean and variance

def prob_feature_class(m, v, x):
 n_features = m.shape[1]
 pfc = np.ones(2)
 for i in range(0, 2):
 product = 1
 for j in range(0, n_features):
 product = product * (1/sqrt(2*np.pi*v[i][j])) * exp(-0.5
 * pow((x[j] - m[i][j]),2)/v[i][j])
 pfc[i] = product
 return pfc

def GNB(X, y, x):
 m, v = mean_var(X, y)

 pfc = prob_feature_class(m, v, x)
 pre_probab = pre_prob(y)
 pcf = np.ones(2)
 total_prob = 0
 for i in range(0, 2):
 total_prob = total_prob + (pfc[i] * pre_probab[i])
 for i in range(0, 2):
 pcf[i] = (pfc[i] * pre_probab[i])/total_prob
 prediction = int(pcf.argmax())
 return m, v, pre_probab, pfc, pcf, prediction

Y = Y.astype(int)

executing the Gaussian Naive Bayes for the test instance...
m, v, pre_probab, pfc, pcf, prediction = GNB(X, Y, np.array([2,2]))
print(m) # Output given below...(mean for 2 classes of all features)
print(v) # Output given below..(variance for 2 classes of features)
print(pre_probab) # Output given below.........(prior probabilities)
print(pfc) # Output given below............(posterior probabilities)
print(pcf) # Conditional Probability of the classes given test-data
print(prediction) # Output given below............(final prediction)

[[0.12908891 0.85586925]
 [1.13164542 0.12410715]]
[[0.79127964 1.14334245]
 [0.84673467 0.96361033]]
[0.5 0.5]
[0.01034183 0.01819066]
[0.36245814 0.63754186]
1

[53]:

import pandas as pd # for data manipulation
import numpy as np # for data manipulation

from sklearn.model_selection import train_test_split # for splitting the data into train and test samples
from sklearn.metrics import classification_report # for model evaluation metrics
from sklearn.preprocessing import OrdinalEncoder # for encoding categorical features from strings to number arrays

import plotly.express as px # for data visualization
import plotly.graph_objects as go # for data visualization

Differnt types of Naive Bayes Classifiers
from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import CategoricalNB
from sklearn.naive_bayes import BernoulliNB

Function that handles sample splitting, model fitting and report printing
def mfunc(X, y, typ):

 # Create training and testing samples
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

 # Fit the model
 model = typ
 clf = model.fit(X_train, y_train)

 # Predict class labels on a test data
 pred_labels = model.predict(X_test)

 # Print model attributes
 print('Classes: ', clf.classes_) # class labels known to the classifier
 if str(typ)=='GaussianNB()':
 print('Class Priors: ',clf.class_prior_) # prior probability of each class.
 else:
 print('Class Log Priors: ',clf.class_log_prior_) # log prior probability of each class.

 # Use score method to get accuracy of the model
 print('--')
 score = model.score(X_test, y_test)
 print('Accuracy Score: ', score)
 print('--')

 # Look at classification report to evaluate the model
 print(classification_report(y_test, pred_labels))

 # Return relevant data for chart plotting
 return X_train, X_test, y_train, y_test, clf, pred_labels

y = Y
Fit the model and print the result
X_train, X_test, y_train, y_test, clf, pred_labels, = mfunc(X, y, GaussianNB())

Specify a size of the mesh to be used
mesh_size = 5
margin = 5

Create a mesh grid on which we will run our model
x_min, x_max = np.min(X[:,0]) - margin, np.max(X[:,0]) + margin
y_min, y_max = np.min(X[:,1]) - margin, np.max(X[:,1]) + margin
xrange = np.arange(x_min, x_max, mesh_size)
yrange = np.arange(y_min, y_max, mesh_size)
xx, yy = np.meshgrid(xrange, yrange)

Create classifier, run predictions on grid
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
Z = Z.reshape(xx.shape)

Specify traces
trace_specs = [
 [X_train, y_train, 0, 'Train', 'brown'],
 [X_train, y_train, 1, 'Train', 'aqua'],
 [X_test, y_test, 0, 'Test', 'red'],
 [X_test, y_test, 1, 'Test', 'blue']
]

Build the graph using trace_specs from above
fig = go.Figure(data=[
 go.Scatter(
 x=X[y==label,0], y=X[y==label,1],
 name=f'{split} data, Actual Class: {label}',
 mode='markers', marker_color=marker
)
 for X, y, label, split, marker in trace_specs
])

Update marker size
fig.update_traces(marker_size=5, marker_line_width=0)

Update axis range
#fig.update_xaxes(range=[-1600, 1500])
#fig.update_yaxes(range=[0,345])

Update chart title and legend placement
fig.update_layout(title_text="Decision Boundary for Naive Bayes Model",
 legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1))

Add contour graph
fig.add_trace(
 go.Contour(
 x=xrange,
 y=yrange,
 z=Z,
 showscale=True,
 colorscale='magma',
 opacity=1,
 name='Score',
 hoverinfo='skip'
)
)

fig.show()

Classes: [0 1]
Class Priors: [0.5125 0.4875]
--
Accuracy Score: 0.775
--
 precision recall f1-score support

 0 0.76 0.72 0.74 18
 1 0.78 0.82 0.80 22

 accuracy 0.78 40
 macro avg 0.77 0.77 0.77 40
weighted avg 0.77 0.78 0.77 40

Data type cannot be displayed: application/vnd.plotly.v1+json

[6]:

import numpy as np
from scipy import stats
from pprint import pprint
np.random.seed(1)

n = 100
p = 1

model_type = 'y=f(x)'
#model_type = 'x=f(y)'

#add_intercept = False
add_intercept = True

df = pd.read_csv('_static//datamining_hw2_question2.csv')
xx = df['x'].values
yy = df['y'].values

GENERATE DATA IN PYTHON
xx = np.random.normal(0,1,n)
yy = 2 * xx + np.random.normal(0,1,n)

if model_type == 'y=f(x)':
 y = yy
 x = xx
elif model_type == 'x=f(y)':
 y = xx
 x = yy

if add_intercept:
 xvec = np.hstack((np.vstack(np.ones(len(x))),np.vstack(x)))
else:
 xvec = np.vstack(x)

def f(arr):
 if add_intercept:
 return m[0] + m[1] * arr
 else:
 return m * arr

m = np.dot(np.linalg.inv(np.dot(xvec.T, xvec)), np.dot(xvec.T, y))
also, m, _, _, _ = np.linalg.lstsq(xvec, y)

yhat = f(x)

print('constants', m)

def analyze_linear_model(y, yhat, x, n, p):
 ybar = np.sum(y)/len(y)

 residuals = y - yhat
 SSR = np.sum((yhat - ybar)**2)
 SST = np.sum((y - ybar)**2)
 SSE = np.sum((y - yhat)**2) # or residuals.T @ residuals

 RSE = np.sqrt(SSR / (n - 2))
 MSE = (sum((y-yhat)**2))/(n-p)

 correlation_r = []
 for col in range(x.shape[1]):
 correlation_r.append(np.cov(x[:,col],y)[0][1]/ (np.std(x[:,col]) * np.std(y)))

 sigma_squared_hat = SSE / (n - p)
 var_beta_hat = (np.linalg.inv(xvec.T @ xvec) * sigma_squared_hat)[0][0]
 # or var_beta_hat = MSE*(np.linalg.inv(np.dot(xvec.T,xvec)).diagonal())

 sd_b = np.sqrt(var_beta_hat)
 ts_b = m/ sd_b
 p_ttest =2*(1-stats.t.cdf(np.abs(ts_b),(n - p)))

 F = (SSR/p)/(SSE/(n - p - 1))
 p_ftest = stats.f.cdf(F, p, n-p-1)

 R2_another_calc = 1 - (1 + F * (p) / (n - p - 1))**(-1)

 # print("r2 another way", R2_another_calc)

 info = {'SSR': SSR,
 'SSE': SSE,
 'SST': SST,
 'r2': SSR / SST,
 'RSE': RSE,
 'MSE': MSE,
 'r': correlation_r,
 'Var(Bhat)': var_beta_hat,
 'Sd(Bhat)': sd_b,
 't(Bhat)': ts_b,
 'p_ttest(Bhat)': p_ttest,
 'F(Bhat)': F,
 'p_ftest(Bhat)': p_ftest
 }

 pprint(info)

 import statsmodels.api as sm
 model = sm.OLS(y,x)
 results = model.fit()
 results_summary = results.summary()
 print(results_summary)

analyze_linear_model(y, yhat, xvec, n, p)

Approximate form of t-test (for a no-intercept model)
approx_t_bhat = (np.sqrt(n - 1) * np.sum(x * y)) / np.sqrt(np.sum(x**2) * np.sum(y**2) - (np.sum(x * y))**2)
'approx_t_bhat', approx_t_bhat

constants [-0.03769261 1.99893961]
{'F(Bhat)': 344.31026392149494,
 'MSE': 0.9175314048171069,
 'RSE': 1.8045834713513378,
 'SSE': 90.83560907689355,
 'SSR': 319.1391074972955,
 'SST': 409.97471657418896,
 'Sd(Bhat)': 0.09649621618971455,
 'Var(Bhat)': 0.009311519738932126,
 'p_ftest(Bhat)': 0.9999999999999999,
 'p_ttest(Bhat)': array([0.69692306, 0.]),
 'r': [nan, 0.8912022644583839],
 'r2': 0.7784360707998542,
 't(Bhat)': array([-0.39061235, 20.7152124])}

<ipython-input-6-9a69040a4fca>:61: RuntimeWarning: invalid value encountered in double_scalars
 correlation_r.append(np.cov(x[:,col],y)[0][1]/ (np.std(x[:,col]) * np.std(y)))

 OLS Regression Results
==
Dep. Variable: y R-squared: 0.778
Model: OLS Adj. R-squared: 0.776
Method: Least Squares F-statistic: 344.3
Date: Wed, 29 Sep 2021 Prob (F-statistic): 7.72e-34
Time: 21:56:20 Log-Likelihood: -137.09
No. Observations: 100 AIC: 278.2
Df Residuals: 98 BIC: 283.4
Df Model: 1
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
const -0.0377 0.097 -0.389 0.698 -0.230 0.155
x1 1.9989 0.108 18.556 0.000 1.785 2.213
==
Omnibus: 3.621 Durbin-Watson: 2.174
Prob(Omnibus): 0.164 Jarque-Bera (JB): 3.626
Skew: 0.448 Prob(JB): 0.163
Kurtosis: 2.743 Cond. No. 1.17
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[6]:

('approx_t_bhat', 18.725931937448564)

[7]:

import numpy as np
from scipy import stats
import pandas as pd
from pprint import pprint
np.random.seed(1)

n = 100
p = 5

TO BUILD IN PYTHON
X = np.random.normal(np.arange(1,p+1), 1, (n,p))
eps = np.random.normal(0,1,n)
beta_star = np.array([1.0,0.0,2.0,-0.5,0.5,1.0])[:p+1]
y = np.dot(xvec, beta_star) + eps

Read in from R to ensure same data

if p == 5:
 filename = "_static//datamining_hw2_question3.csv"
 df = pd.read_csv(filename, index_col=0)
 X = df[[f'x.{i}' for i in range(1,p+1)]].values
 y = df['y'].values

else:
 filename = "_static//datamining_hw2_question3c.csv"
 df = pd.read_csv(filename, index_col=0)
 X = df[['x']].values
 y = df['y'].values

xvec = np.hstack((np.vstack(np.ones(len(X))),np.vstack(X)))

m = np.dot(np.linalg.inv(np.dot(xvec.T, xvec)), np.dot(xvec.T, y))

print('coefficients:', m)
yhat = np.dot(xvec, m)

analyze_linear_model(y, yhat, xvec, n, p)

import matplotlib.pyplot as plt
plt.plot(y)
plt.plot(yhat)

r2 = np.corrcoef(y,yhat) ** 2
r2

coefficients: [0.80429471 -0.01880692 2.07708222 -0.46570561 0.49094525 0.96793266]
{'F(Bhat)': 465.3294242077351,
 'MSE': 0.9608057901465713,
 'RSE': 4.80140017057294,
 'SSE': 91.2765500639243,
 'SSR': 2259.2374726018297,
 'SST': 2350.5140226657495,
 'Sd(Bhat)': 0.23273137162305024,
 'Var(Bhat)': 0.054163891337546316,
 'p_ftest(Bhat)': 0.9999999999999999,
 'p_ttest(Bhat)': array([8.21720809e-04, 9.35763387e-01, 3.28626015e-14, 4.82409864e-02,
 3.75311950e-02, 7.00777143e-05]),
 'r': [nan,
 0.7231431404804363,
 0.9424031322894084,
 0.6299604540858132,
 0.7127929784445699,
 0.8480567254338526],
 'r2': 0.9611674088374925,
 't(Bhat)': array([3.45589297, -0.08080958, 8.92480546, -2.00104357, 2.10949323,
 4.1590124])}
 OLS Regression Results
==
Dep. Variable: y R-squared: 0.961
Model: OLS Adj. R-squared: 0.959
Method: Least Squares F-statistic: 465.3
Date: Wed, 29 Sep 2021 Prob (F-statistic): 1.17e-64
Time: 21:56:21 Log-Likelihood: -137.33
No. Observations: 100 AIC: 286.7
Df Residuals: 94 BIC: 302.3
Df Model: 5
Covariance Type: nonrobust
==
 coef std err t P>|t| [0.025 0.975]
--
const 0.8043 0.234 3.438 0.001 0.340 1.269
x1 -0.0188 0.099 -0.191 0.849 -0.215 0.177
x2 2.0771 0.095 21.926 0.000 1.889 2.265
x3 -0.4657 0.088 -5.263 0.000 -0.641 -0.290
x4 0.4909 0.092 5.310 0.000 0.307 0.675
x5 0.9679 0.084 11.474 0.000 0.800 1.135
==
Omnibus: 1.726 Durbin-Watson: 2.009
Prob(Omnibus): 0.422 Jarque-Bera (JB): 1.664
Skew: -0.225 Prob(JB): 0.435
Kurtosis: 2.555 Cond. No. 18.2
==

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

<ipython-input-6-9a69040a4fca>:61: RuntimeWarning: invalid value encountered in double_scalars
 correlation_r.append(np.cov(x[:,col],y)[0][1]/ (np.std(x[:,col]) * np.std(y)))

[7]:

array([[1. , 0.96116741],
 [0.96116741, 1.]])

[image: ../_images/nblinks_intro_supervised_13_3.png]

TODO: add CI for betas, try out MLE solution (maximize log likelihood across parameter lambda in a boxcox), add H leverage, add standard error r, plot standandard error (y) vs leverage (x) and add cookes distance lines

Discriminant Analysis

Overview

Discriminant analysis employs a decision boundary to partition a feature space into classifications. We find a boundary by finding where \(\delta_1 = \delta_2\).

Details

Other notes

LDA has \(k \times p\) (from \(\mu_k\)) PLUS \(k - 1\) (from \(\pi_k\)) PLUS \(\frac{p}{p+1}/2\) from \(\Sigma\) (because the correlation matrix is symmetric)

QDA has \(k \times p\) (from \(\mu_k\)) PLUS \(k - 1\) (from \(\pi_k\)) PLUS \(k \times \frac{p}{p+1}/2\) from \(\Sigma_k\) (because the correlation matrix is symmetric)

QDA:

\[P(Y=k | X) = \frac{\pi(k) f_k(x)}{\sum_{i=1}^k \pi_k f_k(x)} = \pi_k f_k(x) \times C = \pi_k (2\pi)^{-p/2} \log |\Sigma_k|^{-1/2} \times \exp(-\frac{1}{2} (x - \mu_k)^T)\]

If take \(\log\) of this, it becomes the discriminant score. LDA cancels the first term. The squared term is used so a quadratic boundary is found.

\(\delta_k(x) = \ln p_k(x) + c\)

Hidden Markov Models (HMM)

A hidden markov model (HMM) is a stochatic process (evolution in time of a random process) based on a markov chain (probability of each event depends only on the state attained in the previous event). A HMM infers unobserved information from observed data through the study of probabilities.

Observed data can contain noise (i.e. due to sensor readings) which hides the ground truth. For instance, if reading location from a GPS while standing still, the sensor may jump around a small amount even though the hidden truth is constant. This “hidden truth” is called a state variable. A HMM chains these states together (chronologically) to estimate the state at time = 1 from time = 0 (for the case of a simple 1st order markov chain). Each state \(X_i\) has an associated
observation \(Y_i\).

Assume there are M possible states to choose from (i.e. for binary, M=2). We can define a matrix A of size \(M \times M\) which symbolizes the transition matrix. This transition matrix contains the probabilities of moving from a state \(j\) given the previous state \(i\).

\[a_{ij} = P[X_k = j | X_{k-1} = i]\]

We can define a vector \(S_k\) at a specific point in time \(k\) as a probability vector.

\[\begin{split}S_k = \begin{vmatrix}
p[X_k = 1] \\
p[X_k = 2] \\
... \\
p[X_m = m] \\
\end{vmatrix}\end{split}\]

This is calculated by multiplying the previous state’s probabilities \(S_{k-1}\) by the transition matrix \(A\).

\[S_k^T = S_{k-1}^T A\]

Again, this tells us the probabilities of a state at timestep \(k\).

The probabilities of a state \(i\) resulting in an observed value \(j\) can be contained in an emission matrix \(B\), of size \(m \times k\). Written formally,

\[b_{ij} = P[Y_k = j | X_j = i].\]

The emission matrix shows us the probability of a state \(i\) will result in a result \(k\). For instance, there exists a (say) 5% chance that intentionally typing “d” (state) will result in “c” (observed) by slipping your fingers.

Generally speaking, a transition matrix \(A\) and emission matrix \(B\) could be rebuilt at each timestep \(t\) to consider non-stationary markov chains. However, in the above case, we assume stationary behavior and can therefore conclude a single matrix \(A\) that can be applied across time.

Baum Welch

The transition matrix \(A\), emission matrix \(B\) and initial state distribution \(\pi_0\) can be trained so that the model is maximally like the observed data. This is called expectation maximization (EM). In the training process, there are three phases: 1) initialization, 2) forward, 3) backward, and 4) update.

In the initialization phase, the \(A\), \(B\) and \(\pi_0\) parameters are initialized. This can be randomized, but usually is distributed as a Dirichlet, \(Dir(\alpha)\), which is a multivariate generalization of the beta distribution. This distribution is an exponential family distribution, it has a conjugate prior and thus can be used easily in bayesian analysis.

NN Learning

We can solve for gradients in a vectorized manner.

A function \(\mathbf{f}: R^n \xrightarrow{} R^m\) exists such that \(\mathbf{f}(\mathbf{x}) = [f_1(x_1, ..., x_n), f_2(x_1, ..., x_n), ..., f_m(x_1, ..., x_n)]\). Its jacobian can be calculated as

\[\begin{split}\frac{d\mathbf{f}}{d\mathbf{x}} =
 \begin{bmatrix}
 \frac{df_1}{dx_1} & \dots & \frac{df_1}{dx_n} \\
 \vdots & \ddots & \vdots \\
 \frac{df_m}{dx_1} & \dots & \frac{df_m}{dx_b} \\
 \end{bmatrix}\end{split}\]

In other words, \((\frac{d\mathbf{f}}{d\mathbf{x}})_{ij} = \frac{df_i}{dx_j}\). This jacobian is useful for the application of chain rule to a vector-valued function just by multiplying jacobians.

For example, suppose we have a function \(\mathbf{f}(x) = [f_1(x), f_2(x)]\) taking a scaler to a vector of size 2 and a function \(\mathbf{g}(\mathbf{y}) = [g_1(y_1, y_2), g_2(y_1, y_2)]\) taking a vector of size two to a vector of size two. Now let’s compose them to get \(\mathbf{g}(x) = [g_1(f_1(x), f_2(x)), g_2(f_1(x), f_2(x))]\). Using the regular chain rule, we can compute the derivative of \(\mathbf{g}\) as the Jacobian

\[\begin{split}\frac{d\mathbf{g}}{dx} = \begin{bmatrix}
\frac{d}{dx} g_1(f_1(x), f_2(x)) \\
\frac{d}{dx} g_2(f_1(x), f_2(x)) \\
\end{bmatrix}
= \begin{bmatrix}
\frac{d g_1}{d f_1} \frac{d f_1}{dx} + \frac{d g_1}{d f_2} \frac{d f_2}{dx} \\
\frac{d g_2}{d f_1} \frac{d f_1}{dx} + \frac{d g_2}{d f_2} \frac{d f_2}{dx} \\
\end{bmatrix}\end{split}\]

This is the same as multiplying the two jacobians.

\[\begin{split}\frac{d\mathbf{g}}{dx} = \frac{d\mathbf{g}}{d\mathbf{f}} \frac{d\mathbf{f}}{dx} = \begin{bmatrix}
\frac{d g_1}{d f_1} & \frac{d g_1}{d f_2}\\
\frac{d g_2}{d f_1} & \frac{d g_2}{d f_2}\\
\end{bmatrix}
\begin{bmatrix}
\frac{d f_1}{dx}\\
\frac{d f_2}{dx}\\
\end{bmatrix}\end{split}\]

Useful Linear Algebra Identities

(1) Matrix times column vector wrt the column vector

\(\mathbf{z} = \mathbf{W} \mathbf{x}\), what is \(\frac{d\mathbf{z}}{d\mathbf{x}}\)?

Suppose \(\mathbf{W} \in R^{n \times m}\), then we can think of z as a function of \mathbf{x} taking an \(m\)-dimensional vector to an \(n\)-dimensional vector. So, its Jacobian will be \(n \times m\). Note that

\[z_i = \sum_{k=1}^m W_{ik} x_{k}\]

An entry \((\frac{d\mathbf{f}}{d\mathbf{x}})_{ij}\) of the Jacobian will be

\[(\frac{d\mathbf{z}}{d\mathbf{x}})_{ij} = \frac{d z_i}{d x_j} \frac{d}{d x_j} \sum_{k=1}^m W_{ik} x_k = \sum_{k=1}^m W_{ik} \frac{d}{d x_j} x_k = W_{ij}\]

because \(\frac{d}{d x_j} x_k = 1\) if \(k = j\) and 0 if otherwise. So, we see that \(\frac{d \mathbf{z}}{d \mathbf{x}} = \mathbf{W}\).

(2) Row vector times matrix wrt the row vector

\(\mathbf{z} = \mathbf{x} \mathbf{W}\), what is \(\frac{d \mathbf{z}}{d \mathbf{x}}\)?

A computation similar to (1) shows that \(\frac{d \mathbf{z}}{d \mathbf{x}} = \mathbf{W}^T\).

(3) A vector with itself

\(\mathbf{z} = \mathbf{x}\), what is \(\frac{d \mathbf{z}}{d \mathbf{x}}\)?

We have \(z_i = x_i\), so

\[\begin{split}(\frac{d\mathbf{z}}{d\mathbf{x}})_{ij} = \frac{d z_i}{d x_j} = \frac{d}{d x_j} x_i = \begin{cases}
 1 & i=j\\
 0 & otherwise\\
\end{cases}\end{split}\]

So we see that the Jacobian \(\frac{d\mathbf{z}}{d \mathbf{x}}\) is a diagonal matrix where the entry at \((i, i)\) is 1. This is just the identity matrix: \(\frac{d\mathbf{z}}{d \mathbf{x}} = \mathbf{I}\). When applying the chain rule, this term will disappear because a matrix or vector multiplied by the identity matrix does not change.

(4) An elementwise function applied a vector

\(\mathbf{z} = f(\mathbf{x})\), what is \(\frac{d \mathbf{z}}{d \mathbf{x}}\)?

Since \(f\) is being applied elementwise, we have \(z_i = f(x_i)\). So,

\[\begin{split}(\frac{d\mathbf{z}}{d\mathbf{x}})_{ij} = \frac{d z_i}{d x_j} = \frac{d}{d x_j} f(x_i) = \begin{cases}
 f^\prime (x_i) & i=j\\
 0 & otherwise\\
\end{cases}\end{split}\]

So we see that the jacobian \(\frac{d\mathbf{z}}{d\mathbf{x}}\) is a diagonal matrix where the entry at \((i,i)\) is the derivative of \(f\) applied to \(x_i\). We can write this as \(\frac{d \mathbf{z}}{d \mathbf{x}} = diag(f^\prime (\mathbf{x}))\). Since multiplication by a diagonal matrix is the same as doing elementwise multiplication by the diagonal, we could also write \(\circ f^\prime (\mathbf{x})\) when applying the chain rule.

(5) Matrix times column vector wrt the matrix

\(\mathbf{z} = \mathbf{W} \mathbf{x}\), \(\mathbf{\delta} = \frac{d J}{d z}\) what is \(\frac{dJ}{d\mathbf{W}} = \frac{d J}{d \mathbf{z}} \frac{d \mathbf{z}}{d \mathbf{W}} = \delta \frac{d \mathbf{z}}{d \mathbf{W}}\)?

Suppose we ahve a loss function \(J\) (a scalar) and are computing its gradient wrt a matrix \(\mathbf{W} \in R^{n \times m}\). Then we could think of \(J\) as a function of \(\mathbf{W}\) taking \(n m\) inputs (the entries of \(\mathbf{W}\)) to a single output (\(J\)). This means the Jacobian \(\frac{d J}{d \mathbf{W}}\) would be a \(1 \times nm\) vector. But in practice this is not a very useful way of arranging the gradient. It would be much nicer if hte
derivatives were in a \(n \times m\) matrix like this:

\[\begin{split}\frac{d\mathbf{J}}{d\mathbf{W}} =
\begin{bmatrix}
 \frac{d J}{d W_{11}} & \dots & \frac{d J}{d W_{1 m}} \\
 \vdots & \ddots & \vdots \\
 \frac{d J}{d W_{n1}} & \dots & \frac{d J}{d W_{nm}} \\
 \end{bmatrix}\end{split}\]

Since this matrix has the same shape as \(\mathbf{W}\), we could just subtract it (times the learning rate) from \(\mathbf{W}\) when doing gradient descent. So (in a slight abuse of notation) let’s find this matrix as \(\frac{d J}{d \mathbf{W}}\) instead.

This way of arranging the gradients becomes complicated when computing \(\frac{d \mathbf{z}}{d \mathbf{W}}\). Unlike \(J\), \(\mathbf{z}\) is a vector. So if we are trying to rearrange the gradients like with \(\frac{d J}{d \mathbf{W}}\), \(\frac{d \mathbf{z}}{d \mathbf{W}}\) would be an \(n \times m \times n\) tensor! Luckily, we can avoid the issue by taking the gradient wrt a single weight \(W_{ij}\) instead. \(\frac{d \mathbf{z}}{d W_{ij}}\) is just a vector,
which is much easier to deal with. We have

\[z_k = \sum_{l=1}^m W_{kl} x_l\]

\[\frac{d z_k}{d W_{ij}} = \sum_{l=1}^m x_l \frac{d}{d W_{ij}} W_{kl}\]

Note that \(\frac{d}{d W_{ij}} W_{kl} = 1\) if \(i=k\) and \(j=l\) and 0 if otherwise. So if \(k \neq i\) everything in the sum is zero and the gradient is zero. Otherwise, the only nonzero element of hte sum is when \(l=j\), so we just get \(x_j\). Thus we find \(\frac{d z_k}{d W_{ij}} = x_j\) if \(k = i\) and 0 if otherwise. Another way of writing this is

\[\begin{split}\frac{d \mathbf{z}}{d \mathbf{W}_{ij}} = \begin{bmatrix}
0\\
\vdots \\
0\\
x_j\\
0\\
\vdots\\
0\\
\end{bmatrix}\end{split}\]

Here, the \(x_j\) is located in the \(i\)th element.

Now let’s compute \(\frac{d J}{d W_{ij}}\)

\[\frac{d J}{d W_{ij}} = \frac{d J}{d z} \frac{dz}{d W_{ij}} = \mathbf{\delta} \frac{d z}{d W_{ij}} = \sum_{k=1}^m d_k \frac{d z_k}{d W_{ij}} = \delta_{i} x_j\]

The only nonzero term in the sum is \(\delta_i \frac{d z_i}{d W_{ij}}\). To get \(\frac{d J}{d \mathbf{W}}\) we want a matrix where entry \((i, j)\) is \(\delta_i x_j\). This matrix is equal to the outer product \(\frac{d J}{d \mathbf{W}} = \delta^T x^T\).

(6) Row vector time matrix wrt the matrix

\(\mathbf{z} = \mathbf{x} \mathbf{W}\), \(\mathbf{\delta} = \frac{d J}{d z}\) what is \(\mathbf{d J}{d \mathbf{W}} = \delta \frac{d \mathbf{z}}{d \mathbf{W}}\)?

A similar computation to the one above shows \(\frac{d J}{d \mathbf{W}} = \mathbf{x}^T \delta\).

(7) Cross-entropy loss wrt logits

\(\mathbf{\hat{y}} = softmax(\mathbf{\theta}), J = CE(\mathbf{y}, \mathbf{\hat{y}})\), what is \(\frac{d J}{d \mathbf{\theta}}\)?

The gradient is \(\frac{d J}{d \mathbf{\theta}} = \mathbf{\hat{y}} - \mathbf{y}\), or \((\mathbf{\hat{y}} - \mathbf{y})^T\) if \(\mathbf{y}\) is a column vector.

These identities will be enough to let you quickly compute the gradients for many neural networks.

Gradient layout

Jacobean formulation is great for applying the chain rule: simply multiply the Jacobians. However, when doing SGD it’s more convenient to follow the convention “the shape of the gradient equals the shape of the parameter” (as done when computing \(\frac{d J}{d \mathbf{W}}\)) That way subtracting the gradient times the learning rate from the parameters is easy.

Example on 1-layer NN

We compute the gradients of a full neural network with one-layer and cross-entropy (CE) loss.

The forward pass is as follows:

\[\mathbf{x} = input\]

\[\mathbf{z} = \mathbf{W} \mathbf{x} + \mathbf{b_1}\]

\[\mathbf{h} = ReLU(\mathbf{z})\]

\[\mathbf{\theta} = \mathbf{U} \mathbf{h} + \mathbf{b_2}\]

\[\mathbf{\hat{y}} = softmax(\mathbf{\theta})\]

\[J = CE(\mathbf{y}, \mathbf{\hat{y}})\]

It helps to break up the model into the simplest parts possible, so note that we defined \(\mathbf{z}\) and \(\mathbf{\theta}\) to split up the activation functions from the linear transformations in the network’s layers. The dimensions of the model’s parameters are

\[\mathbf{x} \in R^{D_x \times 1}\]

\[\mathbf{b_1} \in R^{D_h \times 1}\]

\[\mathbf{W} \in R^{D_h \times D_x}\]

\[\mathbf{b_2} \in R^{N_c \times 1}\]

\[\mathbf{U} \in R^{N_c \times D_h}\]

where \(D_x\) is the size of our input, \(D_h\) is the size of our hidden layer, and \(N_c\) is the number of classes.

In this example, we will compute all of the network’s gradients: \(\frac{d J}{d \mathbf{U}}\), \(\frac{d J}{d \mathbf{b_2}}\), \(\frac{d J}{d \mathbf{W}}\), \(\frac{d J}{d \mathbf{b_1}}\), \(\frac{d J}{d \mathbf{x}}\)

To start with, recall that ReLU(\(x\)) = max(\(x, 0\)). This means

\[\begin{split}ReLU^\prime (x) = \begin{cases}
1 & x > 0\\
0 & otherwise \\
\end{cases} = sgn(ReLU(x))\end{split}\]

where sgn is the signum function. Note that we are able to write the derivative of the activation in terms of the activation itself.

Now let’s write out the chain rule for \(\frac{d J}{d \mathbf{U}}\) and \(\frac{d J}{d \mathbf{b_2}}\):

\[\frac{d J}{d \mathbf{U}} = \frac{d J}{d \mathbf{\hat{y}}} \frac{d \mathbf{\hat{y}}}{d \mathbf{\theta}} \frac{d \mathbf{\theta}}{d \mathbf{U}}\]

\[\frac{d J}{d \mathbf{b_2}} = \frac{d J}{d \mathbf{\hat{y}}} \frac{d \mathbf{\hat{y}}}{d \mathbf{\theta}} \frac{d \mathbf{\theta}}{d \mathbf{b_2}}\]

Notice that \(\frac{d J}{d \mathbf{\hat{y}}} \frac{d \mathbf{\hat{y}}}{d \mathbf{\theta}} = \frac{d J}{d \mathbf{\theta}}\) is present in both gradients. This makes the math a bit cumbersome. Even worse, if we’re implementing the model without automatic differentiation, computing \(\frac{d J}{d \mathbf{\theta}}\) twice will be inefficient. So it will help us to define some variables to represent the intermediate derivatives:

\[\mathbf{\delta_1} = \frac{d J}{d \mathbf{\theta}}\]

\[\mathbf{\delta_2} = \frac{d J}{d \mathbf{z}}\]

These are the error signals passed down to \(\mathbf{\theta}\) and \(\mathbf{z}\) when doing backpropagation. We can compute them as follows:

Per cross-entropy loss wrt logits,

\[\mathbf{\delta_1} = \frac{d J}{d \mathbf{\theta}} = (\mathbf{\hat{y}} - \mathbf{y})^T\]

Using the chain rule,

\[\mathbf{\delta_2} = \frac{d J}{d \mathbf{z}} = \frac{d J}{d \mathbf{\theta}} \frac{d \mathbf{\theta}}{d \mathbf{h}} \frac{d \mathbf{h}}{d \mathbf{z}}\]

Substituting in \(\mathbf{\delta_1}\),

\[= \mathbf{\delta_1} \frac{d \mathbf{\theta}}{d \mathbf{h}} \frac{d \mathbf{h}}{d \mathbf{z}}\]

Using matrix times column vector wrt column vector,

\[= \mathbf{\delta_1} \mathbf{U} \frac{d \mathbf{h}}{d \mathbf{z}}\]

Using elementwise function applied to a vector,

\[= \mathbf{\delta_1} \mathbf{U} \circ ReLU^\prime (\mathbf{z})\]

\[= \mathbf{\delta_1} \mathbf{U} \circ sgn(\mathbf{h})\]

These final objects have the following sizes: \(\frac{d J}{d \mathbf{z}}\) is (\(1 \times D_h\)), \(\mathbf{\delta_1}\) is (\(1 \times N_c\)), \(\mathbf{U}\) is (\(N_c \times D_h\)), and \(sgn(\mathbf{h})\) is (\(D_h\),).

The error terms can be utilized to compute the gradients.

Using the property that the matrix times column vector wrt matrix,

\[\frac{d J}{d \mathbf{U}} = \frac{d J}{d \mathbf{\theta}} \frac{d \mathbf{\theta}}{d \mathbf{U}} = \mathbf{\delta_1} \frac{d \mathbf{\theta}}{d \mathbf{U}} = \mathbf{\delta_1}^T \mathbf{h}^T\]

Using identity matrix and transposing

\[\frac{d J}{d \mathbf{b_2}} = \frac{d J}{d \mathbf{\theta}} \frac{d \mathbf{\theta}}{d \mathbf{b_2}} = \mathbf{\delta_1} \frac{d \mathbf{\theta}}{d \mathbf{b_2}} = \mathbf{\delta_1}^T\]

Using the property that the matrix times column vector wrt matrix,

\[\frac{d J}{d \mathbf{W}} = \frac{d J}{d \mathbf{\theta}} \frac{d \mathbf{z}}{d \mathbf{W}} = \mathbf{\delta_2} \frac{d \mathbf{z}}{d \mathbf{W}} = \mathbf{\delta_2}^T \mathbf{x}^T\]

Using identity matrix and transposing

\[\frac{d J}{d \mathbf{b_1}} = \frac{d J}{d \mathbf{\theta}} \frac{d \mathbf{z}}{d \mathbf{b_1}} = \mathbf{\delta_2} \frac{d \mathbf{z}}{d \mathbf{b_1}} = \mathbf{\delta_2}^T\]

Using matrix times column vector wrt column vector and transposing

\[\frac{d J}{d \mathbf{x}} = \frac{d J}{d \mathbf{\theta}} \frac{d \mathbf{z}}{d \mathbf{x}} = (\mathbf{\delta_2}^T \mathbf{W})^T\]

[]:

The below example shows the use of backpropagation on a linear regression problem. As a note, this method can be solved (easier, perhaps) with least squares linear algebra.

[36]:

from numpy import *
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

y = mx + b
m is slope, b is y-intercept
def compute_error_for_line_given_points(b, m, points):
 totalError = 0
 for i in range(0, len(points)):
 x = points[i, 0]
 y = points[i, 1]
 totalError += (y - (m * x + b)) ** 2
 return totalError / float(len(points))

def step_gradient(b_current, m_current, points, learningRate):
 b_gradient = 0
 m_gradient = 0
 N = float(len(points))
 for i in range(0, len(points)):
 x = points[i, 0]
 y = points[i, 1]

 # Calculate gradient with partial derivatives
 m_gradient += -x * (y - (m_current * x + b_current))
 b_gradient += -(y - (m_current * x + b_current))

 new_b = b_current - (learningRate * b_gradient)
 new_m = m_current - (learningRate * m_gradient)
 return [new_b, new_m]

def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
 b = starting_b
 m = starting_m
 for i in range(num_iterations):
 b, m = step_gradient(b, m, array(points), learning_rate)
 return [b, m]

def gen_data():

 n_samples = 1000
 random_state = 170
 X, y = make_blobs(n_samples=n_samples, random_state=random_state, centers=1)

 # Anisotropicly distributed data to stretch the blobs
 transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]
 X_aniso = dot(X, transformation)
 return X_aniso

def run():
 points = gen_data()

 learning_rate = 0.0001
 initial_b = 0 # initial y-intercept guess
 initial_m = 0 # initial slope guess
 num_iterations = 1000
 print("Starting gradient descent at b = {0}, m = {1}, error = {2}".format(initial_b, initial_m, compute_error_for_line_given_points(initial_b, initial_m, points)))
 print("Running...")
 [b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
 print("After {0} iterations b = {1}, m = {2}, error = {3}".format(num_iterations, b, m, compute_error_for_line_given_points(b, m, points)))

 plt.scatter(points[:,0], points[:,1])
 plt.plot(points[:,0], m*points[:,0] + b)
 plt.show()

run()

Starting gradient descent at b = 0, m = 0, error = 2.059703523518794
Running...
After 1000 iterations b = -3.2643663545390273, m = -1.3386872077957057, error = 0.11444715957515363

[image: ../_images/nblinks_nn_learning_3_1.png]

Rules of thumb for neural networks

	Batch normalization standardizes the inputs (or activations of a prior layer or inputs directly), offering some regularization effect and reducing generalization error, perhaps no longer requiring the use of dropout for regularization. It can halve the epochs or better. Do not use dropout and batch normalization at the same time.

	The number of hidden layers in a neural network \(N_h = \frac{N_s}{\alpha \times (N_i + N_o)}\) where \(\alpha\) is an arbitrary scaling factor (usually 2 through 10) which symbolizes the number of nonzero weights for each neuron (which is smaller when including dropout layers), \(N_i\) is the number of input neurons, \(N_o\) is the number of output neurons, and \(N_s\) number of samples in a training data set.

[2]:

-*- coding: utf-8 -*-
import torch
import math

class LegendrePolynomial3(torch.autograd.Function):
 """
 We can implement our own custom autograd Functions by subclassing
 torch.autograd.Function and implementing the forward and backward passes
 which operate on Tensors.
 """

 @staticmethod
 def forward(ctx, input):
 """
 In the forward pass we receive a Tensor containing the input and return
 a Tensor containing the output. ctx is a context object that can be used
 to stash information for backward computation. You can cache arbitrary
 objects for use in the backward pass using the ctx.save_for_backward method.
 """
 ctx.save_for_backward(input)
 return 0.5 * (5 * input ** 3 - 3 * input)

 @staticmethod
 def backward(ctx, grad_output):
 """
 In the backward pass we receive a Tensor containing the gradient of the loss
 with respect to the output, and we need to compute the gradient of the loss
 with respect to the input.
 """
 input, = ctx.saved_tensors
 return grad_output * 1.5 * (5 * input ** 2 - 1)

dtype = torch.float
device = torch.device("cpu")
device = torch.device("cuda:0") # Uncomment this to run on GPU

Create Tensors to hold input and outputs.
By default, requires_grad=False, which indicates that we do not need to
compute gradients with respect to these Tensors during the backward pass.
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)

Create random Tensors for weights. For this example, we need
4 weights: y = a + b * P3(c + d * x), these weights need to be initialized
not too far from the correct result to ensure convergence.
Setting requires_grad=True indicates that we want to compute gradients with
respect to these Tensors during the backward pass.
a = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
b = torch.full((), -1.0, device=device, dtype=dtype, requires_grad=True)
c = torch.full((), 0.0, device=device, dtype=dtype, requires_grad=True)
d = torch.full((), 0.3, device=device, dtype=dtype, requires_grad=True)

learning_rate = 5e-6
for t in range(2000):
 # To apply our Function, we use Function.apply method. We alias this as 'P3'.
 P3 = LegendrePolynomial3.apply

 # Forward pass: compute predicted y using operations; we compute
 # P3 using our custom autograd operation.
 y_pred = a + b * P3(c + d * x)

 # Compute and print loss
 loss = (y_pred - y).pow(2).sum()
 if t % 100 == 99:
 print(t, loss.item())

 # Use autograd to compute the backward pass.
 loss.backward()

 # Update weights using gradient descent
 with torch.no_grad():
 a -= learning_rate * a.grad
 b -= learning_rate * b.grad
 c -= learning_rate * c.grad
 d -= learning_rate * d.grad

 # Manually zero the gradients after updating weights
 a.grad = None
 b.grad = None
 c.grad = None
 d.grad = None

print(f'Result: y = {a.item()} + {b.item()} * P3({c.item()} + {d.item()} x)')

99 209.95831298828125
199 144.6602020263672
299 100.70250701904297
399 71.03519439697266
499 50.97850799560547
599 37.403133392333984
699 28.206867218017578
799 21.97317886352539
899 17.745729446411133
999 14.877889633178711
1099 12.93176555633545
1199 11.610918045043945
1299 10.714245796203613
1399 10.105476379394531
1499 9.69210433959961
1599 9.411376953125
1699 9.220744132995605
1799 9.091286659240723
1899 9.003360748291016
1999 8.943641662597656
Result: y = 4.691534383205465e-10 + -2.208526849746704 * P3(2.9543581470115043e-10 + 0.2554861009120941 x)

Network science

Graphs \(G = G(A, X)\) contain an adjacency definition and a feature matrix.

Components of complex systems

Complex systems are ones which

	have many interactions

	There exists no central point

Interactions

Interacting occur between nodes and with their environment

Emergence

Sometimes we see something happen that we dont expect but its the result of the interaction of all of us.

In simple systems, the properties of the whole can be understood or predicted from the addition or aggregation of its components. If you have knowledge of the microscopic properties of your system, you can predict macroscopic properties of the system.

In complex systems, knowing the knowledge of the components will not be enough to know what happens at the end. Here, the whole is more than the sum of its parts. These systems change their states dynamically and its likely hard to expect what will happen.

Self-organization

Complex systems may self-organize to produce non-trivial patterns spontaneously without a blueprint. For example,

	local tree growth with random forest fires caused by lightning yield complex spatio-temporal patterns

Adaption

Complex systems may adapt and evolve. Complex systems are often active and responding to the environment. For example,

	immune system continuously learning about pathogens

	evolution theory

Interdisciplinary

Complex systems appear in all scientific and professional domains.

Universality means that many systems in different domains display phenomena with common underlying features that can be described using the same scientific models. This is a common idea in transfer learning

Methods

Complex science involves many variables and configurations, needs advanced mathematical and computational modeling, analysis and simulations, and needs to use computers to check ifa set of hypothetical rules could lead to a behavior observed in nature. For example,

	Agent-based modeling for the flocking of birds

	mathematical and computer models of the brain

	climate forecasting computer models

	computer models of pedestrian dynamics

Two main methods:

	advanced mathemaatical models

	computer-based mathematical techniques

Complexity Theory

	System Theory: Mother of complexity theory, a framework which can be investigated and/or develops any group of objects that work together to produce some result

	Chaos Theory: Concerns deterministic systems whose behavior can, in principle, be predicted. They are highly sensitive to initial conditions (butterfly effect). Chaotic systems are predictable for a while and then ‘appear’ to become random.

	Adaptive System Theory: Organization of things without any central control. This deals with action and behavior of others and operate on simple rules. Examples: evolutionary adaption in biology, robotics

	Network Theory: study of graphs as a representation of relations between discrete objects. Studies real-world data. Examples: social networks, gene interactions, pandemics, transporation networks, citation networks

Anatomy

Node degree: the number of links connected to the node

Directed networks define an in-degree (\(k_i^{in}\)) and out-degree (\(k_i^{out}\)) of node \(i\). The total degree is the sum of in- and out-degree. The source is a node with \(k^{in} = 0\). A sink is a node with \(k^{out} = 0\)

Average degree

Undirected:

	we define the total number of links as \(L = \frac{1}{2} \sum_{i=1}^N k_i\). We divide by two to not double count.

	the average link is \(<k> = \frac{1}{N} \sum_{i=1}^N k_i = \frac{2L}{N}\)

where \(N\) is the number of nodes in the graph.

Directed:

	A node’s total degree is \(k_i = k_i^{in} + k_i^{out}\).

	The total number of links is \(L = \sum_{i=1}^N k_i^{in} = \sum_{i=1}^{N} k_i^{out}\)

	The average degree is \(<k^{in}> = \frac{1}{N} \sum_{i=1}^N k_i^{in} = <k^{out}> = \frac{1}{N} \sum_{i=1}^N k_i^{out} = \frac{L}{N}\)

Degree Distribution

A probability \(p_k\) that a randomly chosen node has degree \(k\).

\[p_k = \frac{N_k}{N}\]

Where \(N_k\) is the number of nodes with degree \(k\).

\[\sum_{k=1}^{\infty} p_k = 1\]

The average degree is simply the weighted average (expected value of a discrete variable).

\[<k> = \sum_{k=0}^{\infty} k p_k\]

log-log plots are helpful when defining degree distribution with wide range of probabilities

“hubs” are the highly-connected nodes in a network

Bipartite networks

Nodes can be divided into two disjoint sets \(U\) and \(V\) such that each link connects a U-node to a V-node. We can generate two projections for each bipartite network. The first projection connects two \(U\)-nodes if they are linked to the same \(V\)-node. The second projection connects the \(V\)-nodes if they connect to the same \(U\)-node.

This is used in (say) the hollywood actor network, where a movie is connected to an actor if the actor plays in that movie. We can decompose a \(U\) (movie network) and \(V\) (actor network).

The Human disease network connects diseases to the genes whose mutations are known to cause or effect the corresponding disease. We can decompose a \(U\) (diseases network) and \(V\) (genes network).

Shortest path

Never loops, never overlaps.

Shortest path between two nodes can be calculated by A^2. But this is not computationally efficient.

Instead, we can use Breadth-first-search.

Step 1: Start at node i that we label with “0”.

Step 2: Find the nodes directly linked to i, and label them distance “1” and put them in a queue.

Step 3: Take the first node, labeled n, out of the queue (n=1 in the first step), find the unlabeled nodes adjacent ot it in the graph, and label them with \(n+1\) and put them in the queue.

Step 4: Repeat step 2 until you find the target \(j\) or there are no more nodes in the queue.

Step 5: The distance between i and j is the label of j. if j does not have a label, then \(d_{ij} = \infty\).

Network Diameter

Network diameter, \(d_max\), is the maximum distance between any pair of nodes in the graph.

The average path length is the average number of steps along the shortest paths for all possible pairs of networks nodes.

\[<d> = \frac{1}{2 L_{max}} \sum_{i, j \neq i} d_{ij}\]

here \(d_{ij}\) is the distance from node \(i\) to node \(j\).

These are the measure of efficiency of information or mass transport on a network.

Connectedness

Subgraphs in an adjacency matrix are defined by \(k \times k\) matrices with at least one connection (nonzero)

Clustering coefficient

A clustering coefficient (in [0,1]) tells you what fraction of your neighbors are connected.

\[C_i = \frac{2 e_i}{k_i (k_i - 1)}\]

from Watts & Strogatz, Nature 1998.

For random networks, the diameter of \(G(n,m)\) would be the diameter of a graph G averaged over the ensemble

\[<l> = \sum_{G} p(G) l(G) = \frac{1}{\Omega} \sum_G l(G)\]

For instance for the \(G(n,m)\) model, the average number of edges is \(m\) and the mean node degree is \(<k>=2m/n\). However, other properties are hard to analytically obtain.

If, instead, the number nodes and the probability of making connections is fixed, notated by \(G(n,p)\), can do other things.

Question:

\(p(L)\): What is the probability that a random network has exactly L links?

The number of nodes \(N\) has the total number of paris of nodes \(n(n-1)/2\). The probability that \(L\) of the attempts to connect the \(N(N-1)/2\) pairs of nodes is \(p^L\). The probability that the remaining \(N(N-1)/2 - L\) attempts have not resulted in a link: \((1-p) []\) <- CHECK ON THIS

The probability to have exactly \(L\) links in a network of \(N\) nodes and probability \(p\) is

Small World

Distance is not related to N. It is related to \(\ln N\). As a note, real networks are \(\ln \ln N\).

Expected number of nodes up to distance \(d\) from our starting node is

\[N(d) \approx 1 + <k> + <k>^2 + ... + <k>^d = \frac{<k>^{d+1} - 1}{<k> - 1}\]

Obviously, the \(N(d)\) must not exceed \(N\). So, \(N(d_{max}) \approx N\). Assuming that \(<k>\) is much greater than \(1\), \(<k>^{d_{max}} \approx N\). Therefore, \(d_{max} \approx \frac{\ln N}{\ln <k>}\). This changes slowly because of the natural logs.

Clustering coefficient

Degree of a node contains no information about the relationship between a node’s neighbors.

We estimate the expected number of links \(L_i\) between the node’s \(k_i\) nieghbors

\[<L_i> = p \frac{k_i (k_i - 1)}{2}\]

where \(p\) is the probability that two of \(i\)’s neighbors link to each other.

The local clustering coefficient of a random network is

\[C_i = \frac{2 <L_i>}{k_i (k_i - 1)} = p = \frac{<k>}{N}\]

Two predictions (regarding real networks) can be formed:

	For fixed , the larger the network, the smaller is a node’s clustering coefficient. Note that also follows the same formula for \(C_i\). THIS PREDICTION IS NOT CORRECT. IT SHOULD GO UP.

	The local clusteirng coefficient of a node is independent of the node’s degree.

Summary: Random network model does not apture the clustering of real networks.

Real networks have a much higher clustering coefficient than expected

Average clustering coefficient of real networks is much higher

In real networks, the number of nodes at distance \(d > <d>\) drops rapidly

Universality

Problem with small world - distance between arbitray nodes is very small - but, the clustering coefficient cannot be explained in small world model. So what kind of model can explain a real network?

Scale free property - we can see hub.

Fit the power law, we can figure out if it is scale free.

Algorithm: Step 1: Plot the degree distribution

Step 2: Measure the degree exponent

Step 3: Exponent

As the value of the degree exponent plays an important role in predicting various network properties, we need tools to fit the \(p_k\) distribution and to estimate \(\gamma\)

A power grid is not scale free because it is a grid - there arent these huge hubs that exist.

Barabasi-Albert (BA) Model

Generative Adversarial Networks (GANs)

GANs are trained in a self-supervised process where a discriminator tries to determine whether a data point is real data or one that is generated.

[1]:

from utils import disp
disp('gan_architecture.png')

[image: ../_images/nblinks_model_summaries_1_0.png]

The GAN uses a value function (minmax problem) to learn.

\[min_G max_D V(G,D) = E_{X\sim P_data} ln(D(x)) + E_{Z\sim P_Z} ln(1-D(G(z)))\]

We optimize the loss function using a loss function (i.e. stochastic gradient descent). The training process is generally structured as follows:

	Fix the learning of G

	Inner loop on D k times

	Take \(m\) data samples & m fake data samples

	Update \(\theta_d\) by gradient ascent (because discriminator is trying to maximize the value function)

\[\frac{d}{d\theta_d} \frac{1}{m} [ln(D(x)) + ln(1 - D(G(z)))]\]

	Fix learning of D

	Take m fake data samples

	Update \(\theta_g\) by gradient descent

\[\frac{d}{d\theta_g} \frac{1}{m} [ln(1 - D(G(z)))]\]

For every \(k\) updates of D, we update G once.

The goal is to make \(P_G\) converge to \(P_{data}\). Here, we assume that \(P_G\) is equal to \(P_{data}\) at the global minimum. To prove this,

For fixed G,

\[V(G,D) = \int_x p_{data}(x) ln(D(x)) + p_g (x) ln(1 - D(x)) dx\]

will be maximum for \(D(x) = \frac{p_{data}(x)}{p_{data}(x) + p_g(x)}\)

Fixing D as this maximum, we can plug into our value function

\[min_G V = E_{x\sim p_data} ln(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)}) + E_{x\sim p_g} ln(1 - \frac{p_{data}(x)}{p_{data}(x) + p_g(x)})\]

\[= E_{x\sim p_{data}} ln(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)}) + E_{x\sim p_g} ln(\frac{p_{data}(x)}{p_{data}(x) + p_g(x)})\]

From here, we want to prove that pdf of G is the same as pdf of data. To measure the difference between two distributions, we can use JS divergence.

\[JS(p_1 | p_2) = \frac{1}{2} E_{x\sim p_1} ln(\frac{p_1}{\frac{p_1 + p_2}{2}}) + \frac{1}{2} E_{x\sim p_2} (\frac{p_2}{\frac{p_1+p_2}{2}})\]

This is close to the previous expression. With some modifications, we get

\[min_G V = E_{x\sim p_{data}} ln(\frac{p_{data}(x)}{\frac{p_{data}(x) + p_g(x)}{2}}) + E_{x\sim p_g} ln(\frac{p_{data}(x)}{\frac{p_{data}(x) + p_g(x)}{2}}) - 2ln2\]

\[min_G V = 2 JS(p_data | p_g) - 2ln2\]

What is minimum value of this expression? JS cannot be negative. It can only be zero when \(p_{data} = p_g\). If this occurs, then our minimum is \(min_G V = -2ln2\).

Once the generator is trained, the discriminator will not be able to tell which data point is original and which is generated. So, the discriminator will output 0.5 for every input (theoretically).

Thought experiment: GANs for explainable AI?

GANs should be helpful for explainable AI.

Normal implemnntation:

[3]:

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torch.optim as optim
import torchvision.datasets as datasets
import imageio
import numpy as np
import matplotlib

from torchvision.utils import make_grid, save_image
from torch.utils.data import DataLoader
from matplotlib import pyplot as plt
from tqdm import tqdm

matplotlib.style.use('ggplot')

learning parameters
batch_size = 512
epochs = 200
sample_size = 64 # fixed sample size
nz = 128 # latent vector size
k = 1 # number of steps to apply to the discriminator
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

transform = transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.5,),(0.5,)),
])

to_pil_image = transforms.ToPILImage()

train_data = datasets.FashionMNIST(
 root='input/data',
 train=True,
 download=True,
 transform=transform
)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)

class Generator(nn.Module):
 def __init__(self, nz):
 super(Generator, self).__init__()
 self.nz = nz
 self.main = nn.Sequential(
 nn.Linear(self.nz, 256),
 nn.LeakyReLU(0.2),

 nn.Linear(256, 512),
 nn.LeakyReLU(0.2),

 nn.Linear(512, 1024),
 nn.LeakyReLU(0.2),

 nn.Linear(1024, 784),
 nn.Tanh(),
)

 def forward(self, x):
 return self.main(x).view(-1, 1, 28, 28)

class Discriminator(nn.Module):
 def __init__(self):
 super(Discriminator, self).__init__()
 self.n_input = 784
 self.main = nn.Sequential(
 nn.Linear(self.n_input, 1024),
 nn.LeakyReLU(0.2),
 nn.Dropout(0.3),

 nn.Linear(1024, 512),
 nn.LeakyReLU(0.2),
 nn.Dropout(0.3),

 nn.Linear(512, 256),
 nn.LeakyReLU(0.2),
 nn.Dropout(0.3),

 nn.Linear(256, 1),
 nn.Sigmoid(),
)

 def forward(self, x):
 x = x.view(-1, 784)
 return self.main(x)

generator = Generator(nz).to(device)
discriminator = Discriminator().to(device)

print('##### GENERATOR #####')
print(generator)
print('######################')

print('\n##### DISCRIMINATOR #####')
print(discriminator)
print('######################')

optimizers
optim_g = optim.Adam(generator.parameters(), lr=0.0002)
optim_d = optim.Adam(discriminator.parameters(), lr=0.0002)

loss function
criterion = nn.BCELoss()

losses_g = [] # to store generator loss after each epoch
losses_d = [] # to store discriminator loss after each epoch
images = [] # to store images generatd by the generator

to create real labels (1s)
def label_real(size):
 data = torch.ones(size, 1)
 return data.to(device)

to create fake labels (0s)
def label_fake(size):
 data = torch.zeros(size, 1)
 return data.to(device)

function to create the noise vector
def create_noise(sample_size, nz):
 return torch.randn(sample_size, nz).to(device)

to save the images generated by the generator
def save_generator_image(image, path):
 save_image(image, path)

function to train the discriminator network
def train_discriminator(optimizer, data_real, data_fake):
 b_size = data_real.size(0)
 real_label = label_real(b_size)
 fake_label = label_fake(b_size)

 optimizer.zero_grad()

 output_real = discriminator(data_real)
 loss_real = criterion(output_real, real_label)

 output_fake = discriminator(data_fake)
 loss_fake = criterion(output_fake, fake_label)

 loss_real.backward()
 loss_fake.backward()
 optimizer.step()

 return loss_real + loss_fake

function to train the generator network
def train_generator(optimizer, data_fake):
 b_size = data_fake.size(0)
 real_label = label_real(b_size)

 optimizer.zero_grad()

 output = discriminator(data_fake)
 loss = criterion(output, real_label)

 loss.backward()
 optimizer.step()

 return loss

create the noise vector
noise = create_noise(sample_size, nz)

generator.train()
discriminator.train()

for epoch in range(epochs):
 loss_g = 0.0
 loss_d = 0.0
 for bi, data in tqdm(enumerate(train_loader), total=int(len(train_data)/train_loader.batch_size)):
 image, _ = data
 image = image.to(device)
 b_size = len(image)
 # run the discriminator for k number of steps
 for step in range(k):
 data_fake = generator(create_noise(b_size, nz)).detach()
 data_real = image
 # train the discriminator network
 loss_d += train_discriminator(optim_d, data_real, data_fake)
 data_fake = generator(create_noise(b_size, nz))
 # train the generator network
 loss_g += train_generator(optim_g, data_fake)

 # create the final fake image for the epoch
 generated_img = generator(noise).cpu().detach()
 # make the images as grid
 generated_img = make_grid(generated_img)
 # save the generated torch tensor models to disk
 save_generator_image(generated_img, f"_output/gen_img{epoch}.png")
 images.append(generated_img)
 epoch_loss_g = loss_g / bi # total generator loss for the epoch
 epoch_loss_d = loss_d / bi # total discriminator loss for the epoch
 losses_g.append(epoch_loss_g)
 losses_d.append(epoch_loss_d)

 print(f"Epoch {epoch} of {epochs}")
 print(f"Generator loss: {epoch_loss_g:.8f}, Discriminator loss: {epoch_loss_d:.8f}")

print('DONE TRAINING')
torch.save(generator.state_dict(), '_output/generator.pth')

save the generated images as GIF file
imgs = [np.array(to_pil_image(img)) for img in images]
imageio.mimsave('_output/generator_images.gif', imgs)

plot and save the generator and discriminator loss
plt.figure()
plt.plot(losses_g, label='Generator loss')
plt.plot(losses_d, label='Discriminator Loss')
plt.legend()
plt.savefig('_output/loss.png')

GENERATOR
Generator(
 (main): Sequential(
 (0): Linear(in_features=128, out_features=256, bias=True)
 (1): LeakyReLU(negative_slope=0.2)
 (2): Linear(in_features=256, out_features=512, bias=True)
 (3): LeakyReLU(negative_slope=0.2)
 (4): Linear(in_features=512, out_features=1024, bias=True)
 (5): LeakyReLU(negative_slope=0.2)
 (6): Linear(in_features=1024, out_features=784, bias=True)
 (7): Tanh()
)
)
######################

DISCRIMINATOR
Discriminator(
 (main): Sequential(
 (0): Linear(in_features=784, out_features=1024, bias=True)
 (1): LeakyReLU(negative_slope=0.2)
 (2): Dropout(p=0.3, inplace=False)
 (3): Linear(in_features=1024, out_features=512, bias=True)
 (4): LeakyReLU(negative_slope=0.2)
 (5): Dropout(p=0.3, inplace=False)
 (6): Linear(in_features=512, out_features=256, bias=True)
 (7): LeakyReLU(negative_slope=0.2)
 (8): Dropout(p=0.3, inplace=False)
 (9): Linear(in_features=256, out_features=1, bias=True)
 (10): Sigmoid()
)
)
######################

118it [00:10, 12.12it/s]

Epoch 0 of 200
Generator loss: 1.42679989, Discriminator loss: 0.98298115

118it [00:10, 10.82it/s]

Epoch 1 of 200
Generator loss: 1.62489319, Discriminator loss: 0.70377380

118it [00:10, 12.19it/s]

Epoch 2 of 200
Generator loss: 3.10378194, Discriminator loss: 0.70644265

118it [00:10, 12.16it/s]

Epoch 3 of 200
Generator loss: 4.92797756, Discriminator loss: 1.26403916

118it [00:10, 11.90it/s]

Epoch 4 of 200
Generator loss: 3.85051537, Discriminator loss: 0.34978214

118it [00:10, 10.73it/s]

Epoch 5 of 200
Generator loss: 4.61972666, Discriminator loss: 0.26378199

118it [00:10, 10.79it/s]

Epoch 6 of 200
Generator loss: 4.38954210, Discriminator loss: 0.36163151

118it [00:10, 12.21it/s]

Epoch 7 of 200
Generator loss: 4.36764336, Discriminator loss: 0.45374233

118it [00:10, 12.28it/s]

Epoch 8 of 200
Generator loss: 3.98004150, Discriminator loss: 0.61882484

118it [00:10, 12.31it/s]

Epoch 9 of 200
Generator loss: 2.88338304, Discriminator loss: 0.70212597

118it [00:10, 12.20it/s]

Epoch 10 of 200
Generator loss: 3.22872758, Discriminator loss: 0.73741198

118it [00:10, 10.97it/s]

Epoch 11 of 200
Generator loss: 3.26948786, Discriminator loss: 0.62486356

118it [00:10, 10.92it/s]

Epoch 12 of 200
Generator loss: 3.41106462, Discriminator loss: 0.41624784

118it [00:10, 12.09it/s]

Epoch 13 of 200
Generator loss: 3.96793866, Discriminator loss: 0.48023599

118it [00:10, 10.98it/s]

Epoch 14 of 200
Generator loss: 3.39452696, Discriminator loss: 0.40835723

118it [00:10, 11.98it/s]

Epoch 15 of 200
Generator loss: 3.72954559, Discriminator loss: 0.32693329

118it [00:10, 12.20it/s]

Epoch 16 of 200
Generator loss: 4.63171339, Discriminator loss: 0.35380819

118it [00:10, 10.95it/s]

Epoch 17 of 200
Generator loss: 3.63302135, Discriminator loss: 0.40510964

118it [00:10, 12.04it/s]

Epoch 18 of 200
Generator loss: 3.70032191, Discriminator loss: 0.36745089

118it [00:10, 12.15it/s]

Epoch 19 of 200
Generator loss: 3.79039121, Discriminator loss: 0.47844118

118it [00:10, 11.89it/s]

Epoch 20 of 200
Generator loss: 3.54762769, Discriminator loss: 0.30928752

118it [00:10, 12.22it/s]

Epoch 21 of 200
Generator loss: 3.71710515, Discriminator loss: 0.38970572

118it [00:10, 12.20it/s]

Epoch 22 of 200
Generator loss: 3.31698275, Discriminator loss: 0.52958453

118it [00:11, 10.69it/s]

Epoch 23 of 200
Generator loss: 3.57484317, Discriminator loss: 0.55633307

118it [00:11, 10.55it/s]

Epoch 24 of 200
Generator loss: 3.25523281, Discriminator loss: 0.51782972

118it [00:10, 12.00it/s]

Epoch 25 of 200
Generator loss: 3.18583012, Discriminator loss: 0.47012895

118it [00:10, 12.14it/s]

Epoch 26 of 200
Generator loss: 3.19335461, Discriminator loss: 0.51145601

118it [00:10, 12.10it/s]

Epoch 27 of 200
Generator loss: 3.21174383, Discriminator loss: 0.56492382

118it [00:10, 12.13it/s]

Epoch 28 of 200
Generator loss: 3.45740318, Discriminator loss: 0.48976579

118it [00:10, 12.14it/s]

Epoch 29 of 200
Generator loss: 3.05499339, Discriminator loss: 0.57028377

118it [00:10, 11.98it/s]

Epoch 30 of 200
Generator loss: 2.88134313, Discriminator loss: 0.55931473

118it [00:10, 12.14it/s]

Epoch 31 of 200
Generator loss: 3.24226332, Discriminator loss: 0.51059788

118it [00:10, 12.09it/s]

Epoch 32 of 200
Generator loss: 2.86517239, Discriminator loss: 0.63791561

118it [00:10, 12.02it/s]

Epoch 33 of 200
Generator loss: 2.45503569, Discriminator loss: 0.68121541

118it [00:10, 12.02it/s]

Epoch 34 of 200
Generator loss: 2.83101821, Discriminator loss: 0.51598758

118it [00:10, 10.88it/s]

Epoch 35 of 200
Generator loss: 3.05535507, Discriminator loss: 0.49450979

118it [00:10, 11.66it/s]

Epoch 36 of 200
Generator loss: 3.04819036, Discriminator loss: 0.50154257

118it [00:10, 10.93it/s]

Epoch 37 of 200
Generator loss: 3.18599129, Discriminator loss: 0.46228018

118it [00:10, 12.20it/s]

Epoch 38 of 200
Generator loss: 3.08141351, Discriminator loss: 0.50581169

118it [00:10, 12.07it/s]

Epoch 39 of 200
Generator loss: 2.89046168, Discriminator loss: 0.54147011

118it [00:10, 11.00it/s]

Epoch 40 of 200
Generator loss: 3.11255932, Discriminator loss: 0.54231316

118it [00:10, 12.05it/s]

Epoch 41 of 200
Generator loss: 2.69802594, Discriminator loss: 0.55339050

118it [00:10, 11.79it/s]

Epoch 42 of 200
Generator loss: 3.06265306, Discriminator loss: 0.51745349

118it [00:10, 10.87it/s]

Epoch 43 of 200
Generator loss: 2.89635634, Discriminator loss: 0.49023831

118it [00:10, 12.13it/s]

Epoch 44 of 200
Generator loss: 2.85235381, Discriminator loss: 0.54068846

118it [00:10, 12.14it/s]

Epoch 45 of 200
Generator loss: 2.77114344, Discriminator loss: 0.57422400

118it [00:10, 12.08it/s]

Epoch 46 of 200
Generator loss: 2.94623184, Discriminator loss: 0.50683928

118it [00:10, 12.12it/s]

Epoch 47 of 200
Generator loss: 2.51394677, Discriminator loss: 0.66653192

118it [00:10, 12.05it/s]

Epoch 48 of 200
Generator loss: 2.32383966, Discriminator loss: 0.68538570

118it [00:11, 12.04it/s]

Epoch 49 of 200
Generator loss: 2.57492971, Discriminator loss: 0.61851585

118it [00:10, 12.13it/s]

Epoch 50 of 200
Generator loss: 2.47522569, Discriminator loss: 0.60982305

118it [00:10, 12.16it/s]

Epoch 51 of 200
Generator loss: 2.36268973, Discriminator loss: 0.64775735

118it [00:10, 12.05it/s]

Epoch 52 of 200
Generator loss: 2.54246497, Discriminator loss: 0.58563745

118it [00:10, 10.92it/s]

Epoch 53 of 200
Generator loss: 2.59760189, Discriminator loss: 0.61331671

118it [00:10, 12.11it/s]

Epoch 54 of 200
Generator loss: 2.66271830, Discriminator loss: 0.60149300

118it [00:10, 12.17it/s]

Epoch 55 of 200
Generator loss: 2.57131219, Discriminator loss: 0.62431341

118it [00:10, 11.98it/s]

Epoch 56 of 200
Generator loss: 2.45217991, Discriminator loss: 0.64607465

118it [00:10, 10.92it/s]

Epoch 57 of 200
Generator loss: 2.45755219, Discriminator loss: 0.67585933

118it [00:10, 12.11it/s]

Epoch 58 of 200
Generator loss: 2.52498460, Discriminator loss: 0.62965387

118it [00:10, 10.88it/s]

Epoch 59 of 200
Generator loss: 2.40800285, Discriminator loss: 0.66435039

118it [00:10, 10.87it/s]

Epoch 60 of 200
Generator loss: 2.32626867, Discriminator loss: 0.70449632

118it [00:10, 11.75it/s]

Epoch 61 of 200
Generator loss: 2.38575864, Discriminator loss: 0.67307276

118it [00:10, 12.06it/s]

Epoch 62 of 200
Generator loss: 2.46737528, Discriminator loss: 0.61570835

118it [00:10, 12.14it/s]

Epoch 63 of 200
Generator loss: 2.42095017, Discriminator loss: 0.70034283

118it [00:10, 11.89it/s]

Epoch 64 of 200
Generator loss: 2.31449914, Discriminator loss: 0.65447074

118it [00:10, 12.01it/s]

Epoch 65 of 200
Generator loss: 2.39653182, Discriminator loss: 0.60882252

118it [00:10, 12.02it/s]

Epoch 66 of 200
Generator loss: 2.37150860, Discriminator loss: 0.68175209

118it [00:10, 11.57it/s]

Epoch 67 of 200
Generator loss: 2.28956985, Discriminator loss: 0.69170892

118it [00:10, 12.00it/s]

Epoch 68 of 200
Generator loss: 2.57752275, Discriminator loss: 0.64327300

118it [00:10, 12.18it/s]

Epoch 69 of 200
Generator loss: 2.37329602, Discriminator loss: 0.71189284

118it [00:10, 12.09it/s]

Epoch 70 of 200
Generator loss: 2.16448283, Discriminator loss: 0.69848782

118it [00:10, 11.93it/s]

Epoch 71 of 200
Generator loss: 2.34472179, Discriminator loss: 0.67156476

118it [00:10, 12.10it/s]

Epoch 72 of 200
Generator loss: 2.17551994, Discriminator loss: 0.69883925

118it [00:10, 12.05it/s]

Epoch 73 of 200
Generator loss: 2.17170811, Discriminator loss: 0.70166582

118it [00:10, 12.08it/s]

Epoch 74 of 200
Generator loss: 2.05627131, Discriminator loss: 0.76419610

118it [00:10, 11.90it/s]

Epoch 75 of 200
Generator loss: 2.27301955, Discriminator loss: 0.66036499

118it [00:10, 11.71it/s]

Epoch 76 of 200
Generator loss: 2.28018999, Discriminator loss: 0.69041985

118it [00:10, 12.02it/s]

Epoch 77 of 200
Generator loss: 2.20005488, Discriminator loss: 0.70438713

118it [00:10, 10.90it/s]

Epoch 78 of 200
Generator loss: 2.27268672, Discriminator loss: 0.65581048

118it [00:10, 10.79it/s]

Epoch 79 of 200
Generator loss: 2.36812997, Discriminator loss: 0.68771487

118it [00:11, 11.57it/s]

Epoch 80 of 200
Generator loss: 2.19527173, Discriminator loss: 0.69965822

118it [00:10, 11.87it/s]

Epoch 81 of 200
Generator loss: 2.38353372, Discriminator loss: 0.67542112

118it [00:10, 10.83it/s]

Epoch 82 of 200
Generator loss: 2.00821018, Discriminator loss: 0.77538747

118it [00:10, 11.75it/s]

Epoch 83 of 200
Generator loss: 2.06199837, Discriminator loss: 0.72377205

118it [00:10, 10.89it/s]

Epoch 84 of 200
Generator loss: 2.10705400, Discriminator loss: 0.73932397

118it [00:10, 12.01it/s]

Epoch 85 of 200
Generator loss: 2.16597724, Discriminator loss: 0.72270906

118it [00:10, 12.11it/s]

Epoch 86 of 200
Generator loss: 2.15547657, Discriminator loss: 0.72369409

118it [00:10, 12.07it/s]

Epoch 87 of 200
Generator loss: 1.98006141, Discriminator loss: 0.77487230

118it [00:10, 12.10it/s]

Epoch 88 of 200
Generator loss: 2.17026782, Discriminator loss: 0.71066028

118it [00:10, 10.85it/s]

Epoch 89 of 200
Generator loss: 2.10151815, Discriminator loss: 0.71836138

118it [00:10, 12.10it/s]

Epoch 90 of 200
Generator loss: 2.15137696, Discriminator loss: 0.70107192

118it [00:10, 10.76it/s]

Epoch 91 of 200
Generator loss: 2.13201833, Discriminator loss: 0.71878541

118it [00:10, 12.08it/s]

Epoch 92 of 200
Generator loss: 2.12932873, Discriminator loss: 0.69973910

118it [00:10, 12.03it/s]

Epoch 93 of 200
Generator loss: 2.10871553, Discriminator loss: 0.74259883

118it [00:10, 12.06it/s]

Epoch 94 of 200
Generator loss: 2.17168546, Discriminator loss: 0.69877094

118it [00:11, 11.87it/s]

Epoch 95 of 200
Generator loss: 2.05657387, Discriminator loss: 0.76476651

118it [00:11, 11.83it/s]

Epoch 96 of 200
Generator loss: 1.95592308, Discriminator loss: 0.76803041

118it [00:11, 11.70it/s]

Epoch 97 of 200
Generator loss: 2.10769629, Discriminator loss: 0.70019478

118it [00:10, 12.07it/s]

Epoch 98 of 200
Generator loss: 1.97890449, Discriminator loss: 0.73829842

118it [00:10, 12.10it/s]

Epoch 99 of 200
Generator loss: 1.90354776, Discriminator loss: 0.80168343

118it [00:10, 12.09it/s]

Epoch 100 of 200
Generator loss: 1.97588968, Discriminator loss: 0.78837484

118it [00:10, 10.86it/s]

Epoch 101 of 200
Generator loss: 1.93798590, Discriminator loss: 0.80875230

118it [00:10, 12.08it/s]

Epoch 102 of 200
Generator loss: 1.96531487, Discriminator loss: 0.78535426

118it [00:10, 10.75it/s]

Epoch 103 of 200
Generator loss: 1.86302114, Discriminator loss: 0.76587468

118it [00:10, 10.80it/s]

Epoch 104 of 200
Generator loss: 1.93535113, Discriminator loss: 0.77565098

118it [00:10, 11.95it/s]

Epoch 105 of 200
Generator loss: 1.99481142, Discriminator loss: 0.74644858

118it [00:10, 12.06it/s]

Epoch 106 of 200
Generator loss: 1.92222798, Discriminator loss: 0.75295651

118it [00:10, 11.93it/s]

Epoch 107 of 200
Generator loss: 1.98527122, Discriminator loss: 0.76719052

118it [00:10, 12.05it/s]

Epoch 108 of 200
Generator loss: 1.88296998, Discriminator loss: 0.75847024

118it [00:10, 12.18it/s]

Epoch 109 of 200
Generator loss: 1.91546285, Discriminator loss: 0.79423177

118it [00:10, 12.04it/s]

Epoch 110 of 200
Generator loss: 2.05347419, Discriminator loss: 0.78333181

118it [00:10, 11.95it/s]

Epoch 111 of 200
Generator loss: 1.98762047, Discriminator loss: 0.74812883

118it [00:10, 11.90it/s]

Epoch 112 of 200
Generator loss: 2.00333953, Discriminator loss: 0.75139976

118it [00:10, 10.78it/s]

Epoch 113 of 200
Generator loss: 1.93170142, Discriminator loss: 0.73702711

118it [00:10, 12.06it/s]

Epoch 114 of 200
Generator loss: 1.93748260, Discriminator loss: 0.77334636

118it [00:11, 12.00it/s]

Epoch 115 of 200
Generator loss: 1.93474305, Discriminator loss: 0.76822644

118it [00:10, 10.77it/s]

Epoch 116 of 200
Generator loss: 1.93480587, Discriminator loss: 0.78705817

118it [00:10, 11.94it/s]

Epoch 117 of 200
Generator loss: 1.81781912, Discriminator loss: 0.80566841

118it [00:10, 12.09it/s]

Epoch 118 of 200
Generator loss: 1.90504992, Discriminator loss: 0.74386704

118it [00:10, 11.88it/s]

Epoch 119 of 200
Generator loss: 1.86636162, Discriminator loss: 0.76808059

118it [00:10, 12.02it/s]

Epoch 120 of 200
Generator loss: 1.93788433, Discriminator loss: 0.75187492

118it [00:10, 11.95it/s]

Epoch 121 of 200
Generator loss: 1.75950122, Discriminator loss: 0.80740660

118it [00:11, 12.00it/s]

Epoch 122 of 200
Generator loss: 1.73203480, Discriminator loss: 0.84196305

118it [00:10, 11.94it/s]

Epoch 123 of 200
Generator loss: 1.83940530, Discriminator loss: 0.80670452

118it [00:10, 11.90it/s]

Epoch 124 of 200
Generator loss: 1.80591881, Discriminator loss: 0.78669566

118it [00:10, 11.86it/s]

Epoch 125 of 200
Generator loss: 1.84839618, Discriminator loss: 0.77231079

118it [00:11, 10.45it/s]

Epoch 126 of 200
Generator loss: 1.82202017, Discriminator loss: 0.80033922

118it [00:11, 12.02it/s]

Epoch 127 of 200
Generator loss: 1.82240641, Discriminator loss: 0.80433965

118it [00:10, 10.82it/s]

Epoch 128 of 200
Generator loss: 1.78250694, Discriminator loss: 0.78977102

118it [00:10, 11.96it/s]

Epoch 129 of 200
Generator loss: 1.73686993, Discriminator loss: 0.83117014

118it [00:10, 10.81it/s]

Epoch 130 of 200
Generator loss: 1.69894624, Discriminator loss: 0.83944160

118it [00:10, 11.58it/s]

Epoch 131 of 200
Generator loss: 1.70522535, Discriminator loss: 0.83726037

118it [00:10, 12.03it/s]

Epoch 132 of 200
Generator loss: 1.63788044, Discriminator loss: 0.82422584

118it [00:11, 10.69it/s]

Epoch 133 of 200
Generator loss: 1.68943703, Discriminator loss: 0.79931623

118it [00:10, 12.04it/s]

Epoch 134 of 200
Generator loss: 1.77729273, Discriminator loss: 0.82075375

118it [00:10, 11.92it/s]

Epoch 135 of 200
Generator loss: 1.68428946, Discriminator loss: 0.82309252

118it [00:10, 11.99it/s]

Epoch 136 of 200
Generator loss: 1.67224669, Discriminator loss: 0.82916367

118it [00:10, 12.03it/s]

Epoch 137 of 200
Generator loss: 1.72521901, Discriminator loss: 0.83404922

118it [00:10, 10.75it/s]

Epoch 138 of 200
Generator loss: 1.78916895, Discriminator loss: 0.80936950

118it [00:11, 11.95it/s]

Epoch 139 of 200
Generator loss: 1.75150931, Discriminator loss: 0.83272260

118it [00:11, 11.77it/s]

Epoch 140 of 200
Generator loss: 1.76419652, Discriminator loss: 0.81509191

118it [00:11, 11.38it/s]

Epoch 141 of 200
Generator loss: 1.77207625, Discriminator loss: 0.80571991

118it [00:10, 12.01it/s]

Epoch 142 of 200
Generator loss: 1.68275905, Discriminator loss: 0.82235527

118it [00:10, 10.74it/s]

Epoch 143 of 200
Generator loss: 1.76718843, Discriminator loss: 0.80837804

118it [00:11, 11.75it/s]

Epoch 144 of 200
Generator loss: 1.65909672, Discriminator loss: 0.85105503

118it [00:11, 10.62it/s]

Epoch 145 of 200
Generator loss: 1.71078217, Discriminator loss: 0.80839849

118it [00:11, 12.06it/s]

Epoch 146 of 200
Generator loss: 1.73700798, Discriminator loss: 0.83374196

118it [00:11, 10.64it/s]

Epoch 147 of 200
Generator loss: 1.56826782, Discriminator loss: 0.86148900

118it [00:10, 12.03it/s]

Epoch 148 of 200
Generator loss: 1.71385252, Discriminator loss: 0.83115745

118it [00:11, 10.63it/s]

Epoch 149 of 200
Generator loss: 1.70669937, Discriminator loss: 0.84008586

118it [00:11, 10.67it/s]

Epoch 150 of 200
Generator loss: 1.76197851, Discriminator loss: 0.81925625

118it [00:11, 10.39it/s]

Epoch 151 of 200
Generator loss: 1.68872285, Discriminator loss: 0.86071086

118it [00:11, 10.43it/s]

Epoch 152 of 200
Generator loss: 1.68789732, Discriminator loss: 0.83586329

118it [00:11, 10.33it/s]

Epoch 153 of 200
Generator loss: 1.63197529, Discriminator loss: 0.87918919

118it [00:11, 11.87it/s]

Epoch 154 of 200
Generator loss: 1.54937506, Discriminator loss: 0.88343716

118it [00:11, 11.64it/s]

Epoch 155 of 200
Generator loss: 1.57689917, Discriminator loss: 0.92167449

118it [00:11, 11.15it/s]

Epoch 156 of 200
Generator loss: 1.75131404, Discriminator loss: 0.82436347

118it [00:11, 10.36it/s]

Epoch 157 of 200
Generator loss: 1.68738174, Discriminator loss: 0.82771856

118it [00:11, 11.69it/s]

Epoch 158 of 200
Generator loss: 1.65384710, Discriminator loss: 0.85041094

118it [00:11, 11.69it/s]

Epoch 159 of 200
Generator loss: 1.63523507, Discriminator loss: 0.84368449

118it [00:11, 10.67it/s]

Epoch 160 of 200
Generator loss: 1.59416497, Discriminator loss: 0.88509560

118it [00:11, 10.59it/s]

Epoch 161 of 200
Generator loss: 1.61184669, Discriminator loss: 0.88112897

118it [00:11, 10.67it/s]

Epoch 162 of 200
Generator loss: 1.57819831, Discriminator loss: 0.87391430

118it [00:11, 10.63it/s]

Epoch 163 of 200
Generator loss: 1.60059571, Discriminator loss: 0.88005883

118it [00:11, 10.56it/s]

Epoch 164 of 200
Generator loss: 1.64797294, Discriminator loss: 0.84477597

118it [00:11, 11.56it/s]

Epoch 165 of 200
Generator loss: 1.63212502, Discriminator loss: 0.89352602

118it [00:11, 10.56it/s]

Epoch 166 of 200
Generator loss: 1.62318993, Discriminator loss: 0.86100531

118it [00:11, 10.66it/s]

Epoch 167 of 200
Generator loss: 1.69759154, Discriminator loss: 0.86181867

118it [00:11, 11.73it/s]

Epoch 168 of 200
Generator loss: 1.65174174, Discriminator loss: 0.87229192

118it [00:11, 10.44it/s]

Epoch 169 of 200
Generator loss: 1.70960736, Discriminator loss: 0.83075064

118it [00:11, 11.86it/s]

Epoch 170 of 200
Generator loss: 1.53380632, Discriminator loss: 0.88815320

118it [00:11, 10.55it/s]

Epoch 171 of 200
Generator loss: 1.61525106, Discriminator loss: 0.86920583

118it [00:11, 10.57it/s]

Epoch 172 of 200
Generator loss: 1.74724710, Discriminator loss: 0.83650088

118it [00:11, 12.01it/s]

Epoch 173 of 200
Generator loss: 1.56013346, Discriminator loss: 0.90197140

118it [00:11, 11.50it/s]

Epoch 174 of 200
Generator loss: 1.71457875, Discriminator loss: 0.83909225

118it [00:11, 11.84it/s]

Epoch 175 of 200
Generator loss: 1.70677531, Discriminator loss: 0.83399868

118it [00:11, 10.72it/s]

Epoch 176 of 200
Generator loss: 1.60876012, Discriminator loss: 0.86906475

118it [00:11, 11.86it/s]

Epoch 177 of 200
Generator loss: 1.47320735, Discriminator loss: 0.90702981

118it [00:11, 10.49it/s]

Epoch 178 of 200
Generator loss: 1.71973288, Discriminator loss: 0.79212767

118it [00:11, 10.58it/s]

Epoch 179 of 200
Generator loss: 1.60410821, Discriminator loss: 0.87754571

118it [00:11, 10.28it/s]

Epoch 180 of 200
Generator loss: 1.62787437, Discriminator loss: 0.83345455

118it [00:11, 11.79it/s]

Epoch 181 of 200
Generator loss: 1.67670560, Discriminator loss: 0.88268971

118it [00:11, 11.76it/s]

Epoch 182 of 200
Generator loss: 1.55184007, Discriminator loss: 0.87109929

118it [00:11, 11.36it/s]

Epoch 183 of 200
Generator loss: 1.63959110, Discriminator loss: 0.87113965

118it [00:11, 11.79it/s]

Epoch 184 of 200
Generator loss: 1.59965444, Discriminator loss: 0.87320077

118it [00:11, 10.61it/s]

Epoch 185 of 200
Generator loss: 1.62461567, Discriminator loss: 0.85745209

118it [00:11, 10.50it/s]

Epoch 186 of 200
Generator loss: 1.61729789, Discriminator loss: 0.85247296

118it [00:11, 10.44it/s]

Epoch 187 of 200
Generator loss: 1.58122087, Discriminator loss: 0.86318010

118it [00:11, 10.55it/s]

Epoch 188 of 200
Generator loss: 1.51833153, Discriminator loss: 0.92227668

118it [00:11, 10.58it/s]

Epoch 189 of 200
Generator loss: 1.59854269, Discriminator loss: 0.88623565

118it [00:11, 11.85it/s]

Epoch 190 of 200
Generator loss: 1.60617423, Discriminator loss: 0.88586754

118it [00:11, 11.25it/s]

Epoch 191 of 200
Generator loss: 1.59582424, Discriminator loss: 0.88292956

118it [00:11, 10.47it/s]

Epoch 192 of 200
Generator loss: 1.59524691, Discriminator loss: 0.89096653

118it [00:11, 11.85it/s]

Epoch 193 of 200
Generator loss: 1.58404517, Discriminator loss: 0.88426113

118it [00:11, 11.95it/s]

Epoch 194 of 200
Generator loss: 1.56883609, Discriminator loss: 0.88825554

118it [00:11, 11.86it/s]

Epoch 195 of 200
Generator loss: 1.66106474, Discriminator loss: 0.85098940

118it [00:11, 11.81it/s]

Epoch 196 of 200
Generator loss: 1.66241097, Discriminator loss: 0.87594551

118it [00:11, 11.82it/s]

Epoch 197 of 200
Generator loss: 1.50948346, Discriminator loss: 0.94106507

118it [00:11, 10.48it/s]

Epoch 198 of 200
Generator loss: 1.62702358, Discriminator loss: 0.85632008

118it [00:11, 11.84it/s]

Epoch 199 of 200
Generator loss: 1.69493830, Discriminator loss: 0.84410864
DONE TRAINING

[image: ../_images/nblinks_model_summaries_4_401.png]

Explainable AI

There exist a few categories of explainable AI: post-hoc, intrinsic, and distillation.

The post-hoc paradigm usually provides a heat map highlighting important regions for the decision (e.g. [31, 30]). The heat map is computed besides the forward path of the model. The intrinsic paradigm explores the important piece of information within the forward path of the model, e.g., as attention maps

	Post-hoc uses forward path of the model to calculate (usually) a heat map which highlight important regions in an image.

	Intrinsic looks at attention maps, exploring the important piece of information within the forward path of the model.

	Distillation tries to rebuild the neural network into a transparent model.

Summaries

ML & DL models

	Category

	Model

	Description

	When to use

	Extending Concepts

	Ensemble Learning

	Gradient Boosting

	Builds tree one at a time! At each stage \(m\) (\(1 \leq m \leq M\), of \(M\)
total stages) of gradient boosting, suppose some imperfect model \(F_{m}\) (for low
\(m\), this model may simply return \(\hat {y}_{i}=\bar{y}\). In order to
improve \(F_m\), our algorithm should add some new estimator, \(h_{m}(x)\). Thus,
\(F_{m+1}(x)=F_{m}(x)+h_{m}(x)=y\). Therefore, \(h_{m}(x)=y - F_m (x)\).
Gradient boosting will fit \(h\) to the residual \(y - F_m(x)\), attempting to
correct the errors of its predecessor.

	Decrease the bias error. Used in classification (MSE) and regression (log-Loss)

	A generalization of this idea to loss functions other than squared error, and to classification and ranking problems, follows from the
observation that residuals \(h_{m}(x)\) for a given model are the negative gradients of the mean squared error (MSE) loss function
(with respect to \(F(x)\): \(L_{\rm {MSE}}={\frac {1}{2}}\left(y-F(x)\right)^{2}\) and
\(h_{m}(x)=-{\frac {\partial L_{\rm {MSE}}}{\partial F}}=y-F(x)\), meaning the gradient boosting could be specialized to a gradient
descent algorithm, and generalizing it entails “plugging in” a different loss and its gradient.

	Ensemble Learning

	XGBoost

	A form of gradient boosting. XGBoost delivers high performance as compared to Gradient
Boosting. Its training is very fast and can be parallelized / distributed across clusters.
XGBoost computes second-order gradients, i.e. second partial derivatives of the loss
function, which provides more information about the direction of gradients and how to get
to the minimum of our loss function. XGBoost also handles missing values in the dataset.
So, in data wrangling, you may or may not do a separate treatment for the missing values,
because XGBoost is capable of handling missing values internally.

	A good model to try first.

	

	Ensemble Learning

	Random Forest

	RFs train each tree independently, using a random sample of the data. This randomness
helps to make the model more robust than a single decision tree, and less likely to
overfit on the training data

	multi-class because efficient

	

	Statistics

	Beta regression

	
	
	https://www.ime.usp.br/~sferrari/beta.pdf

	Statistics

	Naive Bayes

	Classifier \(\hat{y} = argmax_{k\in\{1,...,K\}} p(C_k) \Pi_{i=1}^n p(x_i \| C_k)\)
that often (in Gaussian NB) uses \(p(X\|C_k) \sim N(\mu_k, \sigma_k^2)\).

	Per the product in this equation, NB requires feature independent. Data scarcity causes
probabilities to be close to zero which can cause numerical instabilities. Additionally,
continuous features have to be transformed to discrete, throwing away a lot of
information.

	

	Statistics

	Linear Discriminant Analysis

	While naive bayes classifier assumes covariance = 0, the LDA assumes equal covariances
between classes \(G\) in \(y\). As a note: quadratic discriminant analysis allows
different covariance matrices.

	Does not work if the classes are not balanced. Also, it’s not applicable to non-linear
problems. Also, sensitive to overfitting.

	

	Statistics

	Support Vector Machine

	see notebook.

	Good when \(p > n\) or when good class partition

	

Sampling

	Category

	Technique

	Description

	When to use

	Extending Concepts

	
	
	
	
	

Estimate integrals:

Variational Bayesian http://www.orchid.ac.uk/eprints/40/1/fox_vbtut.pdf

Monte carlo: see Monte Carlo Integration tab

Optimizers

In stochastic gradient descent, \(\theta_{t-1} = \theta_t - \alpha \delta L(\theta_t)\), the \(\theta\) are getting changed according to the gradient of the loss wrt \(\theta\). \(\alpha\) is the learning rate. If it is small, convergence will be slow and has potential to get caught at local minima; large \(\alpha\) will lead to divergence. The gradient of the loss \(L\) changes quickly after each iteration due to the diversity of each training example. In this base case,
it is common to have “zig-zag” even though we slowly reach the loss minima.

Momentum can overcome this “zig-zag”. We introduce a new hyperparameter \(\mu\) where \(v_{t+1} = \mu v_t - \alpha \delta L(\theta_t)\) and \(\theta_{t+1} = \theta + v_{t+1}\).

	Category

	Technique

	Description

	When to use

	Extending Concepts

	Adaptive learning rate

	Adagrad

	Scales \(\alpha\) for each parameter according to the history of gradients
(previous steps) for that parameter which is basically done by dividing current
gradient in updated rule by the sum of previous gradients. As a result, what happens
is that when the gradient is very large, alpha is reduced and vice-versa.
\(g_{t+1} = g_t + \delta L(\theta_t)^2\) and
\(\theta_{t+1} = \theta_t - \frac{\alpha \delta L(\theta)^2}{\sqrt{g_{t+1} + \eps
ilon}}\)

	
	

	Adaptive learning rate

	RMSProp

	\(g_t\) term (as seen in Adagrad) is calculated by exponential decaying average
and not the sum of gradients.

	
	https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM

	Adaptive learning rate

	Adam

	Uses both the first order moment \(m_t\) and the second order moment \(g_t\)
but they are both decayed over time. Step size is approximately \(\pm \alpha\).
Step size will decrease as it approaches minimum.

	
	

There is often value to using more than one method (an ensemble), because every method has a weakness.

A/B Tests

This tutorial is verbatim from Source: https://towardsdatascience.com/the-math-behind-a-b-testing-with-example-code-part-1-of-2-7be752e1d06f.

1. Set up the experiment

The goal of running an A/B test is to evaluate if a change in a (say) website will lead to improved performance in a specific metric. You may decide to test very simple alternatives such as changing the look of a single button on a webpage or testing different layouts and headlines. You could also run an A/B test on multi-step processes which may have many differences. Examples of this include the steps required in signing up a new user or processing the sale on an online marketplace.

Baseline Conversion Rate and Lift

Before running the test, we will know the baseline conversion rate and the desired lift or increase in signups that we would like to test. The baseline conversion rate is the current rate at which we sign up new users under the existing design. For our example, we want to use our test to confirm that the changes we make to our signup process will result in at least a 2% increase in our sign up rate. We currently sign up 10 out of 100 users who are offered a premium account.

[15]:

bcr = 0.10 # baseline conversion rate
d_hat = 0.02 # difference between the groups

Control Group (A) and Test Group (B)

Typically, the total number of users participating in the A/B test make up a small percentage of the total amount of users. Users are randomly selected and assigned to either a control group or a test group. The sample size that you decide on will determine how long you might have to wait until you have collected enough. For example, websites with large audiences may be able to collect enough data very quickly, while other websites may have to wait a number of weeks. There are some events that
happen rarely even for high-traffic websites, so determining the necessary sample size will inform how soon you can assess your experiment and move on to improving other metrics.

Initially, we will collect 1000 users for each group and serve the current signup page to the control group and a new signup page to the test group.

[16]:

N_A = 1000 # Number of users in control group
N_B = 1000 # Number of users in test group

[20]:

import scipy.stats as scs
import pandas as pd
import numpy as np
np.random.seed(2)

def generate_data(N_A, N_B, p_A, p_B, days=None, control_label='A',
 test_label='B'):
 """Returns a pandas dataframe with fake CTR data
 Example:
 Parameters:
 N_A (int): sample size for control group
 N_B (int): sample size for test group
 Note: final sample size may not match N_A provided because the
 group at each row is chosen at random (50/50).
 p_A (float): conversion rate; conversion rate of control group
 p_B (float): conversion rate; conversion rate of test group
 days (int): optional; if provided, a column for 'ts' will be included
 to divide the data in chunks of time
 Note: overflow data will be included in an extra day
 control_label (str)
 test_label (str)
 Returns:
 df (df)
 """

 # initiate empty container
 data = []

 # total amount of rows in the data
 N = N_A + N_B

 # distribute events based on proportion of group size
 group_bern = scs.bernoulli(N_A / (N_A + N_B))

 # initiate bernoulli distributions from which to randomly sample
 A_bern = scs.bernoulli(p_A)
 B_bern = scs.bernoulli(p_B)

 for idx in range(N):
 # initite empty row
 row = {}
 # for 'ts' column
 if days is not None:
 if type(days) == int:
 row['ts'] = idx // (N // days)
 else:
 raise ValueError("Provide an integer for the days parameter.")
 # assign group based on 50/50 probability
 row['group'] = group_bern.rvs()

 if row['group'] == 0:
 # assign conversion based on provided parameters
 row['converted'] = A_bern.rvs()
 else:
 row['converted'] = B_bern.rvs()
 # collect row into data container
 data.append(row)

 # convert data into pandas dataframe
 df = pd.DataFrame(data)

 # transform group labels of 0s and 1s to user-defined group labels
 df['group'] = df['group'].apply(
 lambda x: control_label if x == 0 else test_label)

 return df

[21]:

ab_data = generate_data(N_A, N_B, bcr, d_hat)

ab_data.head()

[21]:

 Attention

Attention

See for implementations: https://github.com/uzaymacar/attention-mechanisms

The key/value/query formulation of attention is from the paper Attention Is All You Need [https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf].

How should one understand the queries, keys, and values

The key/value/query concepts come from retrieval systems. For example, when you type a query to search for some video on Youtube, the search engine will map your query against a set of keys (video title, description, etc.) associated with candidate videos in the database, then present you the best matched videos (values).

The attention operation turns out can be thought of as a retrieval process as well, so the key/value/query concepts also apply here. (BTW the above example is just a toy system for illustration, in practice search engines and recommendation systems are much more complex.)

As mentioned in the paper you referenced (Neural Machine Translation by Jointly Learning to Align and Translate [https://arxiv.org/abs/1409.0473]), attention by definition is just a weighted average of values,

\[\begin{align}\begin{aligned}c=\sum_{j}\alpha_jh_j\\where :math:`\sum \alpha_j=1`.\end{aligned}\end{align} \]

If we restrict \(\alpha\) to be a one-hot vector, this operation becomes the same as retrieving from a set of elements \(h\) with index \(\alpha\). With the restriction removed, the attention operation can be thought of as doing “proportional retrieval” according to the probability vector \(\alpha\).

It should be clear that \(h\) in this context is the value. The difference between the two papers lies in how the probability vector \(\alpha\) is calculated. The first paper (Bahdanau et al. 2015) computes the score through a neural network

\[\begin{align}\begin{aligned}e_{ij}=a(s_i,h_j), \qquad \alpha_{i,j}=\frac{\exp(e_{ij})}{\sum_k\exp(e_{ik})}\\where :math:`h_j` is from the encoder sequence, and :math:`s_i` is from the decoder sequence. One problem of this approach is, say the encoder sequence is of length :math:`m` and the decoding sequence is of length :math:`n`, we have to go through the network :math:`m*n` times to acquire all the attention scores :math:`e_{ij}`.\end{aligned}\end{align} \]

A more efficient model would be to first project \(s\) and \(h\) onto a common space, then choose a similarity measure (e.g. dot product) as the attention score, like

\[\begin{align}\begin{aligned}e_{ij}=f(s_i)g(h_j)^T\\so we only have to compute :math:`g(h_j)` :math:`m` times and :math:`f(s_i)` :math:`n` times to get the projection vectors and :math:`e_{ij}` can be computed efficiently by matrix multiplication.\end{aligned}\end{align} \]

This is essentially the approach proposed by the second paper (Vaswani et al. 2017), where the two projection vectors are called query (for decoder) and key (for encoder), which is well aligned with the concepts in retrieval systems. (There are later techniques to further reduce the computational complexity, for example Reformer [https://ai.googleblog.com/2020/01/reformer-efficient-transformer.html], Linformer [https://arxiv.org/pdf/2006.04768.pdf].)

How are the queries, keys, and values obtained

The proposed multihead attention alone doesn’t say much about how the queries, keys, and values are obtained, they can come from different sources depending on the application scenario.

\[\begin{align}\begin{aligned}\begin{split} \begin{align*}\text{MultiHead(Q, K, V)} & = \text{Concat}(\text{head}_1, \dots, \text{head}_h) W^{O} \\
 \text{where head$_i$} & = \text{Attention(QW_i^Q, KW_i^K, VW_i^V)}
 \end{align*}\end{split}\\Where the projections are parameter matrices:\end{aligned}\end{align} \]

\[\begin{split}\begin{align*}
W_i^Q & \in \mathbb{R}^{d_\text{model} \times d_k}, \\
W_i^K & \in \mathbb{R}^{d_\text{model} \times d_k}, \\
W_i^V & \in \mathbb{R}^{d_\text{model} \times d_v}, \\
W_i^O & \in \mathbb{R}^{hd_v \times d_{\text{model}}}.
\end{align*}\end{split}\]

For unsupervised language model training like GPT [https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf], \(Q, K, V\) are usually from the same source, so such operation is also called self-attention.

For the machine translation task in the second paper, it first applies self-attention separately to source and target sequences, then on top of that it applies another attention where \(Q\) is from the target sequence and \(K, V\) are from the source sequence.

For recommendation systems, \(Q\) can be from the target items, \(K, V\) can be from the user profile and history.

[1]:

from numpy import array
from numpy import random
from numpy import dot
from scipy.special import softmax

encoder representations of four different words
word_1 = array([1, 0, 0])
word_2 = array([0, 1, 0])
word_3 = array([1, 1, 0])
word_4 = array([0, 0, 1])

stacking the word embeddings into a single array
words = array([word_1, word_2, word_3, word_4])

generating the weight matrices
random.seed(42)
W_Q = random.randint(3, size=(3, 3))
W_K = random.randint(3, size=(3, 3))
W_V = random.randint(3, size=(3, 3))

generating the queries, keys and values
Q = words @ W_Q
K = words @ W_K
V = words @ W_V

scoring the query vectors against all key vectors
scores = Q @ K.transpose()

computing the weights by a softmax operation
weights = softmax(scores / K.shape[1] ** 0.5, axis=1)

computing the attention by a weighted sum of the value vectors
attention = weights @ V

print(attention)

[[0.98522025 1.74174051 0.75652026]
 [0.90965265 1.40965265 0.5]
 [0.99851226 1.75849334 0.75998108]
 [0.99560386 1.90407309 0.90846923]]

 Common Questions

Common Questions

Here, I answer questions from published here [https://huyenchip.com/ml-interviews-book/contents/] in preparation for my interviews. I also include other questions.

Vectors

	Dot product

	[E] What’s the geometric interpretation of the dot product of two vectors?

	[E] Given a vector , find vector of unit length such that the dot product of u and v is maximum.

	Outer product

	[E] Given two vectors a=[3,2,1] and b=[-1,0,1]. Calculate the outer product \(a^T b\)?

	[M] Give an example of how the outer product can be useful in ML.

	[E] What does it mean for two vectors to be linearly independent?

	[M] Given two sets of vectors \(A = a_1, a_2, ..., a_n\) and \(B = b_1, b_2, ..., b_n\). How do you check that they share the same basis?

	[M] Given n vectors, each of d dimensions. What is the dimension of their span?

	Norms and metrics

	[E] What’s a norm? What is \(L_0, L_1, L_2, L_{norm}\)?

	[M] How do norm and metric differ? Given a norm, make a metric. Given a metric, can we make a norm?

[5]:

import numpy as np
import matplotlib.pyplot as plt

print("""1.1 Dot product finds the length of the projection of x onto y
""")

num_iter = 3

fig, axs = plt.subplots(1,num_iter)
for seed, ax in zip(range(num_iter), axs):
 np.random.seed(seed)

 n=2
 x = np.random.uniform(0,1,n)
 y = np.random.uniform(0,1,n)

 # Dot product finds the length of the projection of x onto y
 dot = np.sum(x.T*y) # or np.dot(x,y)

 x_mag = np.sqrt(np.sum(np.square(x)))
 y_mag = np.sqrt(np.sum(np.square(y)))
 angle = np.arccos(dot / (x_mag * y_mag)) * 360 / (2 * np.pi)

 ax.plot([0,x[0]], [0,x[1]], label='x')
 ax.plot([0,y[0]], [0,y[1]], label='y')
 ax.set_title(f"Dot:{round(dot,2)}, angle:{round(angle,2)}")

handles, labels = ax.get_legend_handles_labels()

fig.legend(handles, labels, loc='center right')
plt.tight_layout()
plt.show()

print("""1.2 The maximum dot product is found when the lines are parallel.
""")

print("""2.1 Calculate elementwise product (notated with "X⊗Y")
""")
x = np.array([3,2,1])
y = np.array([-1,0,1])
print('x', x), print('y', y)
print('X⊗Y =', np.multiply.outer(x.T,y))

print("""2.2 Cross products can be used to analyze pairwise correlations
""")

print("""3. Linearly independent vectors have dot(x,y)=0 because angle=90. In terms of eigenvectors/eigenvalues, if the eigenvalue of the matrix is zero, the eigenvector is linearly dependent.
""")

import numpy as np

matrix = np.array(
 [
 [0, 1 ,0 ,0],
 [0, 0, 1, 0],
 [0, 1, 1, 0],
 [1, 0, 0, 1]
])

lambdas, V = np.linalg.eig(matrix.T)
The linearly dependent row vectors
print("Dependent: ", matrix[lambdas == 0,:])

print("4. Confirm independence.")

print("5. The span is the same dimension as the basis. It is generated from linear combinations of the basis vectors.")

print("6. L0 reports the number of incorrect responses. For instance, if 1 answer is reported incorrect out of 5 questions, then the L0 is 1.")

print(" L1 is manhattan distance and is described as the sum of absolutes.")
print(" L2 is euclidean distance and is described as the square root of the sum of squares.")
print(" L-infinity reports the largest magnitud among each element of a vector. In the analogy of construction, by minimizing the L-infinity, we are reducing the cost of the most expensive building.")

print("""\nMetrics d(u,v) induced by a vector space norm has additional properties that are not true of general metrics, namely:
1. Translation Invariance: d(u+w, v+w) = d(u,v)
2. Scaling property: for any real number t, d(tu,tv) = |t| d(u,v)
Conversely, if a metric has the above properties, then d(u,0) is a norm. In other words, a metric is a function of two variables while a norm is a function of one variable.
""")

1.1 Dot product finds the length of the projection of x onto y

[image: ../_images/nblinks_Common_interview_questions_2_1.png]

1.2 The maximum dot product is found when the lines are parallel.

2.1 Calculate elementwise product (notated with "X⊗Y")

x [3 2 1]
y [-1 0 1]
X⊗Y = [[-3 0 3]
 [-2 0 2]
 [-1 0 1]]
2.2 Cross products can be used to analyze pairwise correlations

3. Linearly independent vectors have dot(x,y)=0 because angle=90. In terms of eigenvectors/eigenvalues, if the eigenvalue of the matrix is zero, the eigenvector is linearly dependent.

Dependent: [[0 1 1 0]]
4. Confirm independence.
5. The span is the same dimension as the basis. It is generated from linear combinations of the basis vectors.
6. L0 reports the number of incorrect responses. For instance, if 1 answer is reported incorrect out of 5 questions, then the L0 is 1.
 L1 is manhattan distance and is described as the sum of absolutes.
 L2 is euclidean distance and is described as the square root of the sum of squares.
 L-infinity reports the largest magnitud among each element of a vector. In the analogy of construction, by minimizing the L-infinity, we are reducing the cost of the most expensive building.

Metrics d(u,v) induced by a vector space norm has additional properties that are not true of general metrics, namely:
1. Translation Invariance: d(u+w, v+w) = d(u,v)
2. Scaling property: for any real number t, d(tu,tv) = |t| d(u,v)
Conversely, if a metric has the above properties, then d(u,0) is a norm. In other words, a metric is a function of two variables while a norm is a function of one variable.

Matrices

1. Why do we say that matrices are linear transformations?

Matrices, when multiplied with a vector (for instance) cause a linear transformation on that vector.

\[\begin{split}T(\mathbf{v}) = M \mathbf{v} = M \begin{bmatrix}x\\y\\\end{bmatrix} = \begin{bmatrix}a&b\\c&d\\\end{bmatrix} \begin{bmatrix}x\\y\\\end{bmatrix} = \begin{bmatrix}ax+by\\cx+dy\\\end{bmatrix}\end{split}\]

Matrices give us a powerful systematic way to describe a wide variety of transformations: they can describe rotations, reflections, dilations, and much more

2. What’s the inverse of a matrix? Do all matrices have an inverse? Is the inverse of a matrix always unique?

\(A^{-1} A = A A^{-1} = I\) descibes a matrix \(A\) that, when multiplied by its inverse \(A^{-1}\), generates the identity matrix. Matrices are invertible when they have a nonzero determinant, nonzero eigenvalues, trivial nullspace (only zeros), and full rank (rank = dimension). By, \(A=AI=A(CB)=(AC)B=IB=B\), where \(A\) and \(B\) are square matrices with the same inverse \(C\), an inverse of a matrix is always unique.

3. What does the determinant of a matrix represent?

Factor of deformation caused by the transformation. A determinant of zero “squashes” the parallelpiped, in other words, this matrix is singular.

4. What happens to the determinant of a matrix if we multiply one of its rows by a scalar :math:`ttimes R` ?

	\(\det (kA) = k^n \det(A)\) where A is an \(n \times n\) matrix

	Also, If a matrix \(A\) has a row that is all zeros, then \(\det A = 0\)

5. A :math:`4 times 4` matrix has four eigenvalues :math:`3,3,2,−1`. What can we say about the trace and the determinant of this matrix?

Trace is the sum of the eigenvalues of a matrix. Product of eigenvalues of a matrix is equal to the value of the determinant of a matrix.

6. Given the following matrix:

\[\begin{align}\begin{aligned}\begin{split} \begin{bmatrix}
 1&4&-2\\
 -1&3&2\\
 3&5&-6\\
 \end{bmatrix}\end{split}**Without explicitly using the equation for calculating determinants, what can we say about this matrix’s determinant? Hint: rely on a property of this matrix to determine its determinant.**\end{aligned}\end{align} \]

This matrix has dependent columns, so we know that the determinant is zero. This is true because a matrix whose column vectors are linearly dependent will have a zero row show up in its reduced row echelon form, which means that a parameter in the system can be of any value you like.

7. What’s the difference between the covariance matrix :math:`A^T A` and the Gram matrix :math:`AA^T` ? Given :math:`A in R^{ntimes m}` and :math:`b in R^n`.

\(A A^T\) is a \(m \times m\) matrix

\(A^T A\) is a \(n \times n\) matrix and resembles the covariance.

i. Find :math:`x` such that: :math:`Ax=b` .

\(Ax = b\)

\(A^{-1} A x = A^{-1} b\)

\(I x = A^{-1} B\)

\(x = A^{-1} B\)

ii. When does this have a unique solution?

When A is invertible.

iii. Why is it when A has more columns than rows, Ax=b has multiple solutions?

The most condensed solution will still be a function of multiple columns, meaning multiple solutions will exist.

iv. Given a matrix A with no inverse. How would you solve the equation Ax=b ? What is the pseudoinverse and how to calculate it?

https://www.omnicalculator.com/math/pseudoinverse

8. Derivative is the backbone of gradient descent.

i. What does derivative represent?

Speed of change.

ii. What’s the difference between derivative, gradient, and Jacobian?

Gradient: multivariate derivatives

\[\begin{split}\triangledown f = \begin{bmatrix}
\frac{\delta f(x_1, x_2, x_3)}{\delta x_1} & \frac{\delta f(x_1, x_2, x_3)}{\delta x_2} & \frac{\delta f(x_1, x_2, x_3)}{\delta x_3} \\
\end{bmatrix}\end{split}\]

Jacobian: vector-valued derivatives

\[\begin{split}J = \begin{bmatrix}
\frac{d f_1}{d x_1} & ... & \frac{d f_1}{d x_n}\\
\vdots & \ddots & \vdots\\
\frac{d f_n}{d x_1} & ... & \frac{d f_n}{d x_n}\\
\end{bmatrix}\end{split}\]

As a note, the Hessian is the derivative of the Jacobian.

8. Say we have the weights w∈Rd×m and a mini-batch x of n elements, each element is of the shape 1×d so that x∈Rn×d . We have the output y=f(x;w)=xw . What’s the dimension of the Jacobian δyδx ?

	Given a very large symmetric matrix A that doesn’t fit in memory, say A∈R1M×1M and a function f that can quickly compute f(x)=Ax for x∈R1M . Find the unit vector x so that xTAx is minimal. Hint: Can you frame it as an optimization problem and use gradient descent to find an approximate solution?

Linear regression

1. Derive the least squares solution.

\[\begin{split}\begin{align*}
RSS &= (Y-X\beta)^T (Y-X\beta)\\
 &= (Y^T - \beta^T X^T)(Y-X\beta)\\
 &= Y^T Y
 - Y^T X \beta
 - \beta^T X^T Y
 + \beta^T X^T X \beta\\
\end{align*}\end{split}\]

Differentiate wrt \(\beta\) to minimize…

\[\begin{split}\begin{align*}
0 &= - X^T Y
 - X^T Y
 + 2X^T X \beta\\
 &= -2 X^T Y + 2X^T X \beta\\
 &= - X^T Y + X^T X \beta\\
 &= X^T (-Y + X\beta)\\
 &= X^T (Y - X\beta)\\
\end{align*}\end{split}\]

This is a common solution. But, to solve for \(\beta\), we can backtrack a little…

\[\begin{split}\begin{align*}
0 &= - X^T Y + X^T X \beta\\
\beta &= X^T Y/ (X^T X)\\
\end{align*}\end{split}\]

2. Prove that \(X\) and \(\epsilon\) are independent

We do this by proving \(X \perp \epsilon\). In other words, \(X^T \epsilon = 0\) where \(X\) is \(p\times n\) and \(\epsilon\) is \(n \times 1\)

\[\begin{split}\begin{align*}
X^T \epsilon &= X^T (I - H) y\\
 &= X^T y - X^T H y\\
 &= X^T y - X^T X (X^T X)^{-1} X^T y\\
 &= X^T y - X^T y\\
 &= 0\\
\end{align*}\end{split}\]

While here, we should also prove that \(\epsilon\) and \(\hat{y}\) are independent

\[\begin{split}\begin{align*}
\epsilon \times \hat{y} &= \epsilon \times \hat{y}^T\\
&= (y - \hat{y}) \hat{y}^T\\
&= (I - H) y \hat{y}^T\\
&= (I - H) \epsilon \epsilon^T H\\
&= (I - H) H\\
&= HH - H = 0\\
\end{align*}\end{split}\]

assuming \(\epsilon \epsilon^T = \sigma_\epsilon^2 I\) where \(\epsilon \sim N(0,1)\) and knowing that \(H\) is idopotent \(HH = H\).

3. Prove ANOVA \(SST = SSE + SSR\)

\[\begin{split}\begin{align*}
SST &= \sum_{i=1}^n (y_i - \bar{y})^2\\
 &= \sum_{i=1}^n (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2\\
 &= \sum_{i=1}^n (y_i - \hat{y}_i)^2 + 2 \sum_{i=1}^n (y_i - \hat{y}_i) (\hat{y}_i - \bar{y}) + \sum_{i=1}^n (\hat{y}_i - \bar{y})^2\\
 &= SSR + SSE + 2 \sum_{i=1}^n (y_i - \hat{y}) (\hat{y}_i - \bar{y})\\
\end{align*}\end{split}\]

We know \(2 \sum_{i=1}^n (y_i - \bar{y}) (\hat{y}_i - \bar{y}) = 0\) because

\(\sum_{i=1}^n (y_i - \hat{y}_i) (\hat{y}_i - \bar{y}) = \sum_{i=1}^n \hat{y}_i (y_i - \hat{y}_i) - \bar{y}_i \sum_{i=1}^n (y_i - \hat{y}_i) = 0 - 0 = 0\)

We know

\[R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}\]

As a note, the adjusted \(R^2\) is

\[R^2_{adj} = 1 - \frac{SSE/(N-p-1)}{SST/(N-1)} = 1 - \frac{(1 - R^2)(N-1)}{(N-p-1)}\]

4. Given the standard deviation of residuals (\(\hat{\sigma}^2\)), find \(RSS\):

\[RSE = \sqrt{\frac{RSS}{N-p-1}}\]

\[\hat{\sigma}^2 = RSE^2\]

5. Given F, p, and n, find \(R^2\)

\[\begin{split}\begin{align*}
 F &= \frac{SSR/p}{SSE/(n-p-1)}\\
 &= \frac{(SST - SSE)/p}{SSE/(n-p-1)}\\
 F \frac{p}{n-p-1}&= \frac{SST-SSE}{SSE}\\
 1 + F \frac{p}{n-p-1}&= \frac{SST}{SSE}\\
 1 - (1 + F \frac{p}{n-p-1})^{-1}&= 1-\frac{SSE}{SST} = R^2\\
\end{align*}\end{split}\]

6. In the R output below, how are the terms calculated?

[1]:

from utils import disp
disp('example_OLS_output.png')

[image: ../_images/nblinks_Common_interview_questions_5_0.png]

The estimate is calculated through ordinary least squares (closed form derivation shown above).

The std. error is \(\sqrt{\widehat{Var}(\hat{\beta}_j)}\) where \(\hat{\beta}_j\) is the LS estimator of \(\beta_j\), \(Var(\hat{\beta}_j) = \frac{\sigma_\epsilon^2}{X^\prime X}\) (proof below) is the variability of the coefficients (as new data points are added). We use \(\widehat{Var}\) instead of \(Var\) because we are estimating the sampling variability; things like the gaussian noise can be unknown quanitites and, therefore, the variance must be estimated.

The t-value is the estimate divided by the std. error

The p-value \(Pr(>|t|)\) is a table lookup; We find the p-value on the t distribution with DF \(N-p-1\) and t-value.

The residual standard error is \(RSE = \sqrt{\frac{RSS}{N-p-1}}\). Note, we can find \(RSS\) using the information on this line. Additionally, if we square this value, we receive the variance of the residuals according to \(\hat{\sigma}^2 = RSE^2\).

The R-square value is described as the total amount of variance explained by the model, or \(SSR / SST\).

The adjusted R-square is calculated as a function of the \(R^2\): .

The F-statistic is a “global” test that checks if at least one of your coefficients are nonzero.

Because \(F \sim F_{p, N - p - 1}\), the p-value is estimated as \(Pr(F_{p, N - p - 1} \geq F)\).

7. Prove \(Var[\hat{\beta}] = \frac{\sigma_\epsilon^2}{X^\prime X}\)

We know that

\[\begin{align*}
Var(X) = E[Var(X|Y)] + Var[E(X|Y)]
\end{align*}\]

\[Var(\hat{\beta}) = E[Var(\hat{\beta}|X)] + Var[E(\hat{\beta}|X)]\]

Knowing OLS is unbiased, \(E(\hat{\beta}|X) = \beta\), and therefore \(Var[E(\hat{\beta}|X)] = 0\) and that \(\beta\) is a constant so

\[\begin{split}\begin{align*}
Var(\hat{\beta}) &= E[Var(\hat{\beta}|X)]\\
&= E[\sigma (X^\prime X)^{-1}]
\end{align*}\end{split}\]

To prove this last step,

\[\textrm{Var}(\hat{\mathbf{\beta}}) =
(\mathbf{X}^{\prime} \mathbf{X})^{-1} \mathbf{X}^{\prime}
\; \sigma^2 \mathbf{I} \; \mathbf{X} (\mathbf{X}^{\prime} \mathbf{X})^{-1}
= \sigma^2 (\mathbf{X}^{\prime} \mathbf{X})^{-1}\]

Using this, Let \(\mathbf{x}_j\) be the \(j^{th}\) column of \(\mathbf{X}\), and \(\mathbf{X}_{-j}\) be the \(\mathbf{X}\) matrix with the \(j^{th}\) column removed.

\[\textrm{Var}(\hat{\mathbf{\beta}}_j) =
\sigma^2 [\mathbf{x}_j^{\prime} \mathbf{x}_j - \mathbf{x}_j^{\prime}
\mathbf{X}_{-j} (\mathbf{X}_{-j}^{\prime} \mathbf{X}_{-j})^{-1}
\mathbf{X}_{-j}^{\prime} \mathbf{x}_j]^{-1}\]

From here, Let \(\mathbf{x_1}\) be the \(1\)st column of \(X\). Let \(X_{-1}\) be the matrix \(X\) with the \(1\)st column removed.

Consider the matrices:

\[\begin{split}\begin{align*}
A &= \mathbf{x_1}'\mathbf{x_1}\quad \quad &\text{1 by 1 matrix}\\
B &= \mathbf{x_1}'X_{-1} \quad &\text{1 by n-1 matrix}\\
C &= X_{-1}\mathbf{x_1} & \text{n-1 by 1 matrix} \\
D &= X_{-1}'X_{-1} & \text{n-1 by n-1 matrix}
\end{align*}\end{split}\]

Observe that:

\[\begin{split}X'X = \begin{bmatrix}A & B \\C & D \end{bmatrix}\end{split}\]

By the matrix inversion lemma (and under some existence conditions):

\[\begin{split}\left(X'X \right)^{-1} = \begin{bmatrix}\left(A - BD^{-1}C \right)^{-1} & \ldots \\ \ldots & \ldots \end{bmatrix}\end{split}\]

Notice the 1st row, 1st column of \((X'X)^{-1}\) is given by the Schur complement [https://en.wikipedia.org/wiki/Schur_complement] of block \(D\) of the matrix \(X'X\)

\[\left(A - BD^{-1}C \right)^{-1}\]

8. Derive the ridge regression beta in closed form

It suffices to modify the loss function by adding the penalty. In matrix terms, the initial quadratic loss function becomes

\[(Y - X\beta)^{T}(Y-X\beta) + \lambda \beta^T\beta\]

Expanding the RSS

\[\begin{split}\begin{align*}
RSS &= (Y-X\beta)^T (Y-X\beta) + \lambda \beta^T\beta\\
 &= (Y^T - \beta^T X^T)(Y-X\beta)\\
 &= Y^T Y
 - Y^T X \beta
 - \beta^T X^T Y
 + \beta^T X^T X \beta
 + \lambda \beta^T\beta\\
\end{align*}\end{split}\]

Differentiate wrt \(\beta\) to minimize…

\[\begin{split}\begin{align*}
0 &= - X^T Y
 - X^T Y
 + 2X^T X \beta
 + 2 \lambda \beta\\
 &= -2 X^T Y + 2X^T X \beta + 2 \lambda \beta\\
 X^T Y &= (X^T X + \lambda I) \beta\\
\end{align*}\end{split}\]

Therefore, the ridge estimator is

\[\beta = \frac{X^T Y}{X^T X + \lambda I}\]

As a note, assuming orthonormality of the design matrix implies \(X^T X = I = (X^T X)^{-1}\). So, the ridge estimator can be defined as \(\hat{\beta}(\lambda)_{ridge} = (1 + \lambda)^{-1} \hat{\beta}_{OLS}\).

Also, bias increases with \(\lambda\) (bc more sparse model) and variance decreases with \(\lambda\) (bc more sparse model). So, what happens to the MSE of ridge?

9. Compare the MSE of ridge regression and OLS

OLS minimizes MSE so it will have a smaller MSE than ridge regression.

Dimensionality reduction

1. Why do we need dimensionality reduction?

Remove collinearity & multicollinearity, and save storage & computation time.

2. Eigendecomposition is a common factorization technique used for dimensionality reduction. Is the eigendecomposition of a matrix always unique?

No. If multiple eigenvalues are the same, then decomposition is not unique.

3. Name some applications of eigenvalues and eigenvectors.

Singular value decomposition (SVD), \(A = U D V^T\), is more general than eigendecomposition. Every real matrix has a SVD

[8]:

Singular-value decomposition
import numpy as np
from scipy.linalg import svd
define a matrix
A = np.array([[1, 2], [3, 4], [5, 6]])
A = A - np.mean(A,0)
print("A\n",A)

Eigendecomposition
co=np.cov(A.T)
[D,UI]=np.linalg.eigh(co)
print("UI",UI)

SVD
U, s, VT = svd(A)
print("U, left-singular vectors of A\n", U)
print("Singular values of original matrix A\n", s)
print("V, right-singular vectors of A\n", VT)

A
 [[-2. -2.]
 [0. 0.]
 [2. 2.]]
UI [[-0.70710678 0.70710678]
 [0.70710678 0.70710678]]
U, left-singular vectors of A
 [[-0.70710678 0. 0.70710678]
 [0. 1. 0.]
 [0.70710678 0. 0.70710678]]
Singular values of original matrix A
 [4. 0.]
V, right-singular vectors of A
 [[0.70710678 0.70710678]
 [-0.70710678 0.70710678]]

4. We want to do PCA on a dataset of multiple features in different ranges. For example, one is in the range 0-1 and one is in the range 10 - 1000. Will PCA work on this dataset?

Normalization is important in PCA since it is a variance maximizing exercise. On larger scales, the variance is naturally larger. So, the wrong feature combinations might be chosen.

5. Under what conditions can one apply eigendecomposition? What about SVD?

https://math.stackexchange.com/a/365020/752105

i. What is the relationship between SVD and eigendecomposition?

ii. What’s the relationship between PCA and SVD?

6. How does t-SNE (T-distributed Stochastic Neighbor Embedding) work? Why do we need it?

https://towardsdatascience.com/t-distributed-stochastic-neighbor-embedding-t-sne-bb60ff109561

An unsupervised, randomized algorithm, used only for visualization Applies a non-linear dimensionality reduction technique where the focus is on keeping the very similar data points close together in lower-dimensional space. Preserves the local structure of the data using student t-distribution to compute the similarity between two points in lower-dimensional space. t-SNE uses a heavy-tailed Student-t distribution to compute the similarity between two points in the low-dimensional space rather
than a Gaussian distribution, which helps to address the crowding and optimization problems. Outliers do not impact t-SNE.

Step 1: Find the pairwise similarity between nearby points in a high dimensional space.

Step 2: Map each point in high dimensional space to a low dimensional map based on the pairwise similarity of points in the high dimensional space.

Step 3: Find a low-dimensional data representation that minimizes the mismatch between Pᵢⱼ and qᵢⱼ using gradient descent based on Kullback-Leibler divergence(KL Divergence)

Step 4: Use Student-t distribution to compute the similarity between two points in the low-dimensional space.

PCA is deterministic, whereas t-SNE is not deterministic and is randomized. t-SNE tries to map only local neighbors whereas PCA is just a diagonal rotation of our initial covariance matrix and the eigenvectors represent and preserve the global properties

Statistics

1. Explain frequentist vs. Bayesian statistics.

I have misplaced my phone somewhere in the home. I can use the phone locator on the base of the instrument to locate the phone and when I press the phone locator the phone starts beeping.

Problem: Which area of my home should I search?

Frequentist Reasoning

I can hear the phone beeping. I also have a mental model which helps me identify the area from which the sound is coming. Therefore, upon hearing the beep, I infer the area of my home I must search to locate the phone.

Bayesian Reasoning

I can hear the phone beeping. Now, apart from a mental model which helps me identify the area from which the sound is coming from, I also know the locations where I have misplaced the phone in the past. So, I combine my inferences using the beeps and my prior information about the locations I have misplaced the phone in the past to identify an area I must search to locate the phone.

So, prior beliefs (\(f(p)\)) get updated with new data! This follows human thinking! However, it is sometimes hard to define the priors.

2. Given the array , find its mean, median, variance, and standard deviation.

mean \(\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i\)

variance \(s^2 = \frac{1}{n-1} \sum_{i=1}^n (x - \bar{x})^2\)

3. When should we use median instead of mean? When should we use mean instead of median?

Median is more robust to outliers. Mean is tractible.

4. What is a moment of function? Explain the meanings of the zeroth to fourth moments.

A moment \(M_X(t) = E(e^{tX})\) of a distribution about a number is the expected value of the \(n\)th power of the deviations about that number. It’s a good trick for calculating the properties of a distribution.

n = 0, moment = 1 because the AUC of PDF must be 1.

n = 1 and centered about origin, \(E(X)\)

n = 2 and centered about mean, the variance \(Var(X) = E((X-\mu)^2)\)

n = 3 and centered about mean, the skewness \(E((X-\mu)^3)\)

n = 4 and centered about mean, the kurtosis \(E((X-\mu)^4)\)

5. Are independence and zero covariance the same? Give a counterexample if not.

Independence does not mean a zero covariance. For instance, let \(X\) be a random variable that is \(−1\) or \(+1\) with probability \(0.5\). Then let \(Y\) be a random variable such that \(Y=0\) if \(X=-1\) and \(Y\) is randomly \(-1\) or \(+1\) with probability \(0.5\) if \(X=1\). Clearly, \(X\) and \(Y\) are dependent (since knowing \(Y\) allows me to perfectly know \(X\)), but their covariance is zero. They both have zero mean,
and

\[\begin{split}E[XY] = \begin{align*}
& (-1) * 0 * P(X=-1)\\
&+ 1 * 1 * P(X=1, Y=1)\\
&+ 1 * (-1) * P(X=1, Y=-1)\\
\end{align*} = 0\end{split}\]

Or more generally, take any distribution \(P(X)\) and any \(P(Y|X)\) such that \(P(Y=a|X)=P(Y=−a|X)\) for all \(X\) (i.e., a joint distribution that is symmetric around the \(x\) axis), and you will always have zero covariance. But you will have non-independence whenever \(P(Y|X)\neq P(Y)\); i.e., the conditionals are not all equal to the marginal. Or ditto for symmetry around the \(y\) axis.

Another example is: Take a random variable \(X\) with \(EX=0\) and \(EX^3=0\), e.g. normal random variable with zero mean. Take Y=X2. It is clear that \(X\) and \(Y\) are related, but

\[cov(X,Y)=EXY−EX*EY=EX^3=0\]

Summary of ML implementations on Kaggle: https://www.kaggle.com/shivamb/data-science-glossary-on-kaggle

	Bayesian rule

Let’s say the response variable is either low or high. The population can have either default (D) or not default (ND).

We know \(P(low|D)=\)

What is the probability of default given high?

\[P_D(high) = P(D|high) = \frac{P(high|D) * P(D)}{P(high|D)P(D) + P(high|ND)P(ND)} = \frac{0.85 * 0.5}{0.85 * 0.5 + 0.1 * 0.5}\]

More generally, we can write the posterior continuous probability as:

\[Pr(Y=k|X=x) = \frac{P(X|k) P(k)}{\sum_k P(k) x P(X|k)}\]

With prior of 1/2 what is posterior probability?

\(P(k) = 1/2 = P(1) = P(2)\)

If the \(P(k)\) are the same (as we see), then the posterior update is simply the ratio of the probabilities. So, you’d classify the point where the density is higher. In other words, instead of calculating the posterior \(p_k(x)\), \(k \in C\), we can simply compare them and select the class \(k\) that maximizes \(p_k(x)\)

\(p_1(x) = \frac{\pi_1 f_1(x)}{f(x)}\)

\(p_2(x) = \frac{\pi_2 f_2(x)}{f(x)}\)

Taking the ratio eliminates the \(f(x)\) and makes the computation simpler.

If you simplify this form (where \(P(k) \sim N(\mu, \sigma^2\))),

\[\ln (\frac{P_1(x)}{P_2(x)}) = \ln (\frac{\pi_1 f_1(x)}{\pi_2 f_2(x)}) = ...\]

Show :math:`x = mu_1 + mu_2`

\[\begin{split}\begin{align*}
\delta_1(x) &= \delta_2(x)\\
\frac{\mu_1 x}{\sigma^2} - \frac{\mu_1^2}{2 \sigma^2} &= \frac{\mu_2 x}{\sigma^2} - \frac{\mu_2^2}{2 \sigma^2}\\
x &= \frac{\mu_1 + \mu_2}{2}\\
\end{align*}\end{split}\]

As a note, if \(\sigma\) is the same, this is contained for \(i = 2, ..., m\) groups.

 Cross Entropy

Cross Entropy

Negative log likelihood

Likelihood refers to the chances of some calculated parameters producing some known data. In ML, the parameters are updated to fit a static dataset.

Cost function that is used as loss for machine learning classification models (the lower the better). We use NEGATIVE because most ML frameworks only have minimization optimization functionality.

We take \(\ln\) because it’s cleaner to use when have high or low numbers.

The output of a classification problem is usually a probability vector. For example,

\[\hat{p} = [0.1,0.3,0.5,0.1]\]

If the correct answer is the fourth class \(y = [0,0,0,1]\), the likelihood of the current state of the model producing the input is:

\[L = \hat{p} y^T = 0.1\]

Therefore, \(-\ln(0.1) = 2.3\)

If the correct category would have been the third class \(y = [0,0,1,0]\), the likelihood would be

\[L = 0.5\]

Therefore \(-\ln(0.5) = 0.69\).

The better the prediction, the lower the number!

 Regularization

Regularization

Ridge

Add notes from missed class.

The \(\lambda I_n\) adds

Lasso

Shrinkage effect

If each feature is independent, the design matrix (centerd and standardized) will have \(x_j^T x_k = 1(j=k)\) because they are orthogonal.

The least squares estimator will be reevalauted as

\(\hat{\beta}^{OLS} = (X^T X)^{-1} X^T y = X^T y\)

because \(X^T X = I\). In other words, each predictor can be treated as a basis.

In ridge regression, the \(X^T X + \lambda I_p\) becomes a diagonal matrix of lambdas.

\(\hat{\beta}^R_\lambda = (X^T X + \lambda I_p)^{-1} X^T y = \frac{1}{1 + \lambda} X^T y = \frac{\beta^{OLS}}{1 + \lambda}\)

Therefore, the larger \(\lambda\) is, the smaller the magnitude of each \(\beta_j\). This is a linear function. Here, it is applied uniformally. However, in practice, features are not orthogonal. So, each coefficient is affected nonuniformally. It should shrink more on the smaller eigenvalues.

This will shirnk the prediction by the same scale.

\(\hat{y}\) is scaled by (\(1 + \lambda\))

We know that the \(\hat{\beta}^{OLS}\) is unbiased. \(E \hat{\beta} = (X^T X)^{-1} X^T E(Y) = \beta\) because \(E(Y) = X\beta\).

However, the ridge regression is a biased estimator: \(E \hat{\beta}_\lambda^R = \frac{\beta}{1 + \lambda} \neq \beta\)

Tradeoff between bias and variance. With collinearity, variance explodes (because we cannot take inverse bceause it is singular). Ridge regression will regularize the variance.

For OLS, the \(MSE(\hat{y}^{OLS}) = E(\hat{y}^{OLS} - f(x))^2 = \sigma^2_{OLS}\)

But, consider the ridge regression solution \(\hat{y}_\lambda^R = E(\hat{y}^{OLS} / (1 + \lambda) - f(x))^2 = \frac{\sigma^2_{OLS}}{(1 + \lambda)^2} + \frac{\lambda^2}{(1 + \lambda)^2}f^2(x)\)

In some cases, the \(\sigma_{OLS}\) can be very large due to singularity of \(X^TX\). The shrinkage will increase bias but will reduce variance.

Proof:

\(E(\frac{\hat{y}^{OLS}}{(1 + \lambda)} - f(x))\)

\(= E[(\frac{\hat{y}}{1 + \lambda} - \frac{f(x)}{1 + \lambda}) - (\frac{\lambda}{1 + \lambda} f(x))]\)

\(= \frac{\sigma^2_{OLS}}{1 + \lambda} + (\frac{\lambda}{1 + \lambda})^2 f^2(x)\)

PCA

\(X^T X = (V D U^T) (U D V^T) = U D V^T\)

\(F = XV = UD\) where \(f_j = X v_j\) is the projections to the PC directions and are the principal components.

Note \(f^T_j f_j = d^2_j\) and \(f^T_i f_j = 0\) because orthogonal.

So, with our PCs as \(X\),

\(y = X\beta = y - UDV\beta = y - F \alpha = y - \sigma_{j=1}^p \alpha_j f_j\)

Regression after PCA agains all PCs

\(\alpha = V \beta\) and \(||\alpha||_2 = ||\beta||_2\)

Therefore, the L2 norm of \(\beta\) is the same as L2 norm of \(\alpha\)

The ridge regression therefore

\(min_\beta ()...\)

is equivalent to

\(min_\alpha ()...\)

This allows \(F = UD\) to satisfy the property \(F^T F = DU^T UD = D^2\)

The ridge estimator

\(\hat{\alpha}_\lambda^R = (F^T F + \lambda I)^{-1} F^T y\)

\(= diag(\frac{d_j}{d_j^2 + \lambda}) U^T y\)

$:nbsphinx-math:hat{alpha}:nbsphinx-math:`lambda`^R = (:nbsphinx-math:`frac{d_j^2}{d_j^2 + lambda}`) :nbsphinx-math:`hat{alpha}`:nbsphinx-math:`lambda`^{OLS} $

The smaller the \(d_j\), the more shrinkage.

The prediction is \(\hat{y}^R = F \alpha^R\)

Partial Least Squares

Gradually capture the inform in \(x\) corresponding to the information in \(y\).

\(z_1 = \sum_{j=1}^p \phi_j x_j\)

where \(\phi_j = \frac{<y, x_j>}{<x_j, x_j>} = <y, x_j>\)

We adjust the predictors by removing the effect containted on \(Z_1\)

\(e_j = X_j - Z_1 x_j\)

We do not want duplicate information. Info in \(Z_1\) should not be in \(Z_2\).

Degrees of freedom

We can evaluate the effective degree-of-freedom because

In OLS, the trace of \(H\) is \(p\) because \(\hat{y} = Hy = X(X^T X)^{-1}X^T y = (X^T X)^{-1}X^TX y = tr(I_p) = p\)

The ridge regerssion project \(y\) to

\(\hat{\beta}^R_\lambda = (X^T X + \lambda I_p)^{-1} X^T y = S_\lambda y\)

We measure the effective degrees-of-freedom of ridge regression by

\(tr(S_\lambda) < p\)

Lasso

Subset selection minimizes

\((y - X\beta)^T (y - X\beta) + \lambda ||\beta||_1\)

where \(1 = ||\beta||_1 = |\beta_1| + |\beta_2| = \sum_{j=1}^p |\beta_j|\). Therefore, a diamond (linear functions) is constructed.

L2 norm encourages small \(\beta_j\) but L1 will encourage sparse solutions.

 Theoretical Statistics

Theoretical Statistics

Notes based off Casella and Berger edition 2.

Probability Theory

To Do

Transformations and Expectations

Transformation

Theorem 2.1.5: Let \(X\) have pdf \(f_X(x)\) and let \(Y = g(X)\) where \(g\) is a monotone function. Let \(X\) and \(Y\) be defined by \(\mathbf{X} = \{ x: f_X(x) > 0 \}\) and \(\mathbf{Y} = \{y: y = g(x)\) for some \(x \in \mathbf{X} \}\). Suppose that \(f_X(x)\) is continuous on \(\mathbf{X}\) and that \(g^{-1}(y)\) has a continuous derivative on \(\mathbf{Y}\). Then, the pdf of \(Y\) is given by

\[\begin{split}f_Y(y) = \begin{cases}
f_X(g^{-1}(y)) |\frac{d}{dy} g^{-1}(y) | & y \in \mathbf{Y}\\
0 & o.w.\\
\end{cases}\end{split}\]

Procedure:

	Check if \(g\) is monotonic

	Split up into regions where monotonic and then evaluate formula above

See: Example 2.1.6 (monotonic) and Example 2.1.7 (multiple regions)

Theorem 2.1.10:

\[F^{-1}_X(y) = x \Leftrightarrow F_X(x) = y\]

See: Proof on pg. 54

Expected values

\[\begin{split}E g(X) = \begin{cases}
\int_{-\infty}^\infty g(x) f_X(x) dx& \hbox{ if X is continuous}\\
\sum_{x \in \mathbf{X}} g(x) f_X(x) = \sum_{x \in \mathbf{X}} g(x) P(X=x)& \hbox{ if X is discrete}\\
\end{cases}\end{split}\]

See: Example 2.2.2 for continuous and Example 2.2.3 for discrete

Properties:

	\(E(a g_1(X) + b g_2(X) + c) = a E g_1(X) + b E g_2(X) + c\).

	If \(g_1(x) \geq 0\) for all \(x\) then \(E g_1(X) \geq 0\).

	If \(g_1(x) \geq g_2(x)\) for all \(x\) then \(E g_1(X) \geq E g_2(X)\).

	If \(a \leq g_1(x) \leq b\) for all \(x\) then \(a \leq E g_1(X) \leq b\).

Example: Minimize distance

\[\begin{split}\begin{align*}
& \textcolor{red}{\hbox{Add } \pm E X}\\
E(X-b)^2 &= E(X - E X + E X + b^2)\\
 & \textcolor{red}{\hbox{Group terms}}\\
 &= E((X - EX) + (EX - b))^2\\
 &= E(X-EX)^2 + (EX - b)^2 + 2E((X-EX)(EX - b))\\
 & \textcolor{red}{\hbox{We know } E((X-EX)(EX - b)) = (EX-b)E(X-EX) = 0}\\
 & \textcolor{red}{\hbox{because (EX-b) is constant and } E(X-EX) = EX-EX=0}\\
 &= E(X-EX)^2 + (EX - b)^2\\
\min_b E(X-b)^2 &= E(X-EX)^2\\
 & \textcolor{red}{\hbox{If choosing } b=EX}
\end{align*}\end{split}\]

This result happens to be the definition of variance.

Moments

The \(n\)th central moment of \(X\) is

\[\mu_n = E(X-\mu)^n\]

where \(\mu = E X\).

From this, we know the variance is

\[Var X = E(X - EX)^2\]

See: Example 2.3.3 for the variance of a parameter

Properties:

	\(Var(aX + b) = a^2 Var X\)

	\(Var X = E(X - EX)^2 = EX^2 - (EX)^2\)

Moment Generating Function (mgf)

Let \(X\) be a R.V. with cdf \(F_X\). The mgf of \(X\) (or \(F_X\)) is

\[M_X(t) = E e^{tX}\]

With our knowledge of expected values,

\[\begin{split}M_X(t) = \begin{cases}
\int_{-\infty}^\infty e^{tX} f_X(x) dx & \hbox{if } X \hbox{ is continuous}\\
\sum_{x} e^{tx} P(X=x) & \hbox{if } X \hbox{ is discrete}\\
\end{cases}\end{split}\]

Theorem: The \(n\)th moment is equal to the \(n\)th derivative of \(M_X(t)\) evaluated at \(t=0\).

\[M_X^{(n)}(0) = \frac{d^n}{dt^n} M_X(t) \rvert_{t=0}\]

Assuming we can differentiate under the integral sign (see Leibnitz Rule below),

\[\frac{d}{dt} M_X(t) = E X e^{tX}\]

Evaluating this at \(t=0\), we have

\[\frac{d^n}{dt^n} M_X(t)\rvert_{t=0} = E X^N e^{tX} \rvert_{t=0} = E X^n\]

See: Example 2.3.8 for continuous case and Example 2.3.9 for discrete.

Properties:

	\(M_{aX + b}(t) = e^{bt} M_X(at)\)

Convergence of mgfs

Suppose \(\{X_i, i = 1, 2, ... \}\) is a sequence of RVs, each with mgf \(M_{X_i}(t)\). Furthermore suppose that

\[\lim_{i\xrightarrow{} \infty} M_{X_i}(t) = M_X(t)\]

for all \(t\) in a neighborhood of 0 and \(M_X(t)\) is an mgf. Then, there is a unique cdf \(F_X\) whose moments are determined by \(M_X(t)\) and, for all \(x\) where \(F_X(x)\) is continuous we have

\[\lim_{t\xrightarrow{}\infty}F_{X_i}(x) = F_X(x)\]

. That is, convergence, for \(|t| < h\), of mgfs to an mgf implies convergence of cdfs.

This relies on Laplace transforms, which defines

\[M_X(t) = \int_{-\infty}^\infty e^{tX} f_X(x) dx\]

Proof: Poisson approximation of Binomial

We know that the poisson approximation is valid when \(n\) is large and \(np\) is small.

Recall that the moment of binomial is \(M_X(t) = [p e^t + (1 - p)]^n\).

From the rule above (and just from txtbk), the MGF of poisson is \(M_Y(t) = e^{\lambda (e^t - 1)}\).

If we define \(p = \lambda / n\) then \(M_X(t) \xrightarrow{} M_Y(t)\) as \(n \xrightarrow{} \infty\).

Lemma: If \(\lim_{n\xrightarrow{} \infty} a_n = a\), then

\[\lim_{n\xrightarrow{} \infty} (1 + \frac{a_n}{n})^n = e^a\]

Leibnitz Rule

If \(f(x,\theta)\), \(a(\theta)\), and \(b(\theta)\) are differentiable with respect to \(\theta\), then

See page 69.

If \(a(\theta)\) and \(b(\theta)\) are constant, then

\[\frac{d}{d\theta} \int_a^b f(x,\theta) dx = \int_a^b \frac{\delta}{\delta \theta} f(x,\theta) dx\]

Lebesgue’s Dominated Convergence Theorem

See page 69 & 70. Basically, if the integral is not too badly behaved, then we can say it’s good enough to bring a limit inside an integral.

Lipschitz Continuous

Impose smoothness on a function by bounding its first derivative by a function with finite integral. It leads to interchangeability of integration and differentiation.

See: Theorem 2.4.3 (pg 70), Corollary 2.4.4 and Examples 2.4.5 and 2.4.6

Families of Distributions

Check if pdf part of exponential family

\[f(x|\mathbf{\theta}) = h(x) c(\mathbf{\theta}) \exp (\sum_{i=1}^k w_i(\mathbf{\theta}) t_i(x))\]

where \(h(x) \geq 0\), \(t_i(x)\) are real-valued functions of \(x\), \(c(\mathbf{\theta}) \geq 0\) and \(w_i(\mathbf{\theta})\) are real-valued functions of the possibly vector-valued parameter \(\mathbf{\theta}\) which is independent of \(x\).

Here are some common exponential families:

	Continuous: normal, gamma, beta

	Discrete: binomial, poisson, negative binomial

A distribution which is a member of the exponential family has nice properties. For instance,

Expectations and Variance of exponential family pdf

Theorem: If \(X\) is a RV with pdf or pmf which is member of exponential family,

\[E(\sum_{i=1}^k \frac{\delta w_i(\mathbf{\theta})}{d \theta_j} t_i(X)) = - \frac{\delta}{\delta \theta_j} \log c(\mathbf{\theta})\]

\[Var(\sum_{i=1}^k \frac{\delta w_i(\mathbf{\theta})}{d \theta_j} t_i(X)) = - \frac{\delta^2}{\delta \theta_j^2} \log c(\mathbf{\theta}) - E(\sum_{i=1}^k \frac{\delta^2 w_i(\mathbf{\theta})}{d \theta^2_j} t_i(X))\]

Definition: The indicator function of a set \(A\)

\[\begin{split}I_A(x) = \begin{cases}
1 & x \in A\\
0 & x \not\in A\\
\end{cases}\end{split}\]

So, we can write the normal pdf (example 3.4.4) as

\[f(x|\mu, \sigma^2) = h(x) c(\mu, \sigma) \exp [w_1(\mu, \sigma) t_1(x) + w_2(\mu, \sigma) t_2(x)] I_{(-\infty, \infty)}(x)\]

Since the indicator function is only a function of \(x\), it can be incorporated into the function \(h(x)\), showing that this pdf is of the exponential family form.

Another example is of \(f(x|\theta) = \theta^{-1} \exp(1 - \frac{x}{\theta})\) on \(0 < \theta < x < \infty\). Although this expression can fit the exponential family definition, the indicator function is dependent, \(I_{[\theta, \infty)}(x)\).

Chebychev’s inequality

Let \(X\) be a RV and let \(g(x)\) be a nonnegative function. Then, for any \(r>0\),

\[P(g(X) \geq r) \leq \frac{E g(X)}{r}\]

We usually set \(r = t^2\).

See: Example 3.6.2 and 3.6.3

Multiple Random Variables

Joint probability \(f_{X,Y}(x,y)\)

Definition: Discrete

Marginal probability is \(f_X(x) = \sum_{y \in \mathbf{R}} f_{X,Y}(x,y)\)

Definition: Continuous

\[Eg(X,Y) = \int_{-\infty}^\infty \int_{-\infty}^\infty g(x,y) f(x,y) dx dy\]

\[f_X(x) \int_{-\infty}^\infty f(x,y)dy\]

where \(-\infty <x < \infty\)

\[\frac{\delta^2 F(x,y)}{\delta x \delta y} = f(x,y)\]

Definition: Conditional

\[f(y|x) = P(Y=y|X=x) = \frac{f(x,y)}{f_X(x)}\]

where \(\sum_y f(y|x) = 1\).

\[E(g(Y) | x) = \int_{-\infty}^\infty g(y) f(y|x) dy\]

Independence properties

\[f(x,y) = f_X(x) f_Y(y)\]

\[f(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{f_X(x) f_Y(y)}{f_X(x)} = f_Y(y)\]

\[E(g(X)h(Y)) = (Eg(X))(Eh(Y))\]

\[M_Z(t) = M_X(t) M_Y(t)\]

With \(U=g(X)\) and \(V=h(Y)\) where \(X\) and \(Y\) are independent and \(A_u = \{ x: g(x) \leq u\}\) and $B_v = { y: h(y) :nbsphinx-math:`leq `v}. Then,

\[f_{U,V}(u, v) = \frac{\delta^2}{\delta u \delta v} F_{U,V}(u,v) = (\frac{d}{du} P(X \in A_u)) (\frac{d}{dv} P(Y \in B_v))\]

Conditional expectation \(EX = E(E(X|Y))\)

Rewritten, we say \(E_X X = E_Y (E_{X|Y} (X|Y))\) because \(E(X|Y)\) is a rv (random in \(Y\)),

\[\begin{align}\begin{aligned}E(X|Y=y) = \int x f_{X|Y}(x|Y=y) dx\\is a constant and\end{aligned}\end{align} \]

\[E_Y E(X|Y=y) = \int \{ \int x f_{X|Y}(x|y)dx \} f_Y(y) dy\]

See: Example 4.4.5

Definition: Conditional variance identity

For any two rv \(X\) and \(Y\),

\[Var X = E(Var(X|Y)) + Var(E(X|Y))\]

See: Example 4.4.8

Covariance and correlation

Covariance and correlation measure the strength of a relationship between two rv.

Covariance of \(X\) and \(Y\) is

\[Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = EXY - \mu_X \mu_Y\]

This gives information regarding the relationship of \(X\) and \(Y\). Large positive values mean \(X\) and \(Y\) both go up together or down together. This value, however, struggles because, by itself, it is domain-specific. We can normalize by the variance to ensure the range of the metric… this is what correlation does.

Correlation of \(Y\) and \(Y\) is

\[\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}\]

\(\rho_{XY}\) is also known as the correlation coefficient.

If \(X\) and \(Y\) are independent, then \(EXY = (EX)(EY)\) and therefore,

\[Cov(X,Y) = EXY - (EX)(EY) = 0\]

\[p_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{0}{\sigma_X \sigma_Y} = 0\]

Note: It is invalid to say because \(Cov(X,Y)=0\), \(X\) and \(Y\) are independent. For example, if \(X \sim f(x-\theta)\) and \(Y\) is an indicator function \(Y = I(|X-\theta|<2)\), then \(Y\) and \(X\) are not independent but \(E(XY)\) ends up equaling \(EXEY\) so \(Cov(X,Y) = 0\).

Properties:

For any rv \(X\) and \(Y\),

	\(-1 \leq \rho_{XY} \leq 1\)

	\(|\rho_{XY}| = 1\) iff there exists \(a \neq 0\) and \(b\) st \(P(Y=aX+b) = 1\). If \(\rho_{XY} = 1\), then \(a > 0\), and if \(\rho_{XY} = -1\), then \(a<0\).

Definition: Multivariate variance

If \(X\) and \(Y\) are any two rv and \(a\) and \(b\) are any two constants, then

\[Var(aX + bY) = a^2 Var X + b^2 Var Y + 2ab Cov(X,Y)\]

Note: if \(X\) and \(Y\) are independent rv then

\[Var(aX + bY) = a^2 Var X + b^2 Var Y\]

Multivariate distributions

With \(\mathbf{X} = (X_1, ..., X_n)\) representing a sample space that is a subset of \(\mathbf{R}^n\)

\[P(\mathbf{X} \in A) = \int ... \int_A f(\mathbf{x}) d\mathbf{x}\]

and its expectation

\[E g(\mathbf{X}) = \int_{-\infty}^\infty ... \int_{-\infty}^\infty g(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}\]

The marginal pdf of any subset of the coordinates of \((X_1, ..., X_n)\) can be computed by integrating the joint pdf over all possible values of the coordinates

Multinomial distribution

Let \(n\) and \(m\) be positive integers and let \(p_1,..., p_n\) be numbers satisfying \(0 \leq p_i \leq 1\), \(i=1, ..., n\) and \(\sum_{i=1}^n p_i = 1\). Then the rv (X_1, …, X_n)$ has a multinomial distribution with \(m\) trials and cell probabilities \(p_1, ..., p_n\) if the join pmf of \((X_1, ..., X_n)\) is

\[f(x_1, ..., x_n) = \frac{m!}{x_1! \times ... \times x_n!} p_1^{x_1} \times ... \times p_n^{x_n} = m! \prod_{i=1}^n \frac{p_i^{x_i}}{x_i!}\]

on the set of \((x_1, ..., x_n)\) st \(x_i\) is a nonnegative integer and \(\sum_{i=1}^n x_i = m\).

This follows the following experiment: the experiment consists of \(m\) independent trials. each trial results in one of \(n\) distinct possible outcomes. The probability of \(i\)th outcome is \(p_i\) on every trial. And, \(X_i\) is the count of the number of times the \(i\)th outcome occurred in the \(m\) trials. For \(n=2\), this is just the binomial experiment in which each trial has \(n=2\) possible oucomes and \(X_i\) counts the number of
“successes” and \(X_2 = m - X_1\) counts the number of fials in \(m\) tirlas. In a general multinomial experiment, there are \(n\) possible outcomes to count.

Multinomial properties (similar to univariate)

\[Cov(X_i, X_j) = E[(X_i - p_i)(X_j - p_j)] = -m p_i p_j\]

\[E(g_1(X_1) \times ... \times g_n(X_n)) = (g_1(X_1))\times ... \times (g_n(X_n))\]

\[M_Z(t) = M_{X_1}(t) \times ... \times M_{X_n}(t)\]

In particular, if \(X_1, ..., X_n\) share the same distribution with mgf \(M_X(t)\), then

\[M_Z(t) = (M_X(t))^n\]

Corollary: Linear combination of independent distributions form the same (but multivariate) distribution

Let \(X_1, ..., X_n\) be mutually independent rv with mgfs \(M_{X_1}(t), ..., M_{X_n}(t)\). Let \(a_1, ..., a_n\) and \(b_1, ..., b_n\) be fixed constants. Let \(Z = (a_1X_1 +b_1) + ... + (a_n X_n + b_n)\). Then, the mgf of \(Z\) is

\[\begin{split}\begin{align*}
M_Z(t) &= E e^{tZ}\\
&= Ee^{t\sum (a_i X_i + b_i)}\\
&= (e^{t(\sum b_i)}) E(e^{t(\sum a_i)} \times ... \times e^{t(\sum a_n)})\\
&= (e^{t(\sum b_i)}) M_{X_1}(a_1 t) \times ... \times M_{X_n}(a_n t)\\
\end{align*}\end{split}\]

From this, we can conclude (for instance) that a linear combination of independent (say) normal rv is normally distributed.

\[Z = \sum_{i=1}^n (a_i X_i + b_i) \sim Normal(\sum_{i=1}^n (a_i \mu_i + b_i), \sum_{i=1}^n a_i^2 \sigma_i^2)\]

Inequalities

Per Holder’s Inequality, if \(\frac{1}{p} + \frac{1}{q} = 1\), then \(|EXY| \leq E|XY| \leq (E|X|^p)^{1/p}(E|X|^q)^{1/q}\)

Cauchy-Schwarz’s inequality is a special case of Holder’s Inequality where \(p=q=2\):

\[|EXY| \leq E|XY| \leq (E|X|^2)^{1/2}(E|X|^2)^{1/2}\]

The covariance inequality states that if \(X\) and \(Y\) have means \(\mu_X\) and \(\mu_Y\) and variances \(\sigma_X^2\) and \(\sigma_Y^2\), we can apply Cauch-Schwarz’s Inequality to get

\[E|(X-\mu_X)(Y-\mu_Y)| \leq \{ E(X-\mu_X)^2 \}^{1/2} \{ E(Y-\mu_Y)^2 \}^{1/2}\]

By squaring both sides, we get a useful property:

\[(Cov(X,Y))^2 \leq \sigma_X^2 \sigma_Y^2\]

This can be modified (by setting \(Y \equiv 1\)) to state \(E|X| \leq \{ E|X|^p \}^{1/p}\) (with \(1<p<\infty\)).

Additionally, Liapounov’s Inequality takes this a step further by, for \(1<r<p\), if we replace \(|X|\) by \(|X|^r\) we obtain

\[E|X|^r \leq \{ E(|X|^{pr})^{1/p} \}\]

and then we set \(s=pr\) (where \(s>r\)) and rearrange:

\[\{E|X|^r\}^{1/r} \leq \{ E(|X|^{s})^{1/s} \}\]

Also, Minkowski’s Inequality states that for two rvs \(X\) and \(Y\) and for \(1 \leq p < \infty\),

\[[E|X+Y|^p]^{1/p} \leq [E|X|^p]^{1/p} + [E|Y|^p]^{1/p}\]

This just uses the normal triangle inequality property.

Lastly, Jensen’s Inequality says that for a rv \(X\), if \(g(x)\) is a convex function, then

\[Eg(X) \geq g(EX)\]

Note: This only holds true iff, for every line \(a+bx\) that is tangent to \(g(x)\) at \(x=EX\), \(P(g(X) = a+bX)=1\).

Properties of Random Sample

Statistics

Definition: A statistic \(Y = T(X_1, ..., X_n)\) cannot be a function of a parameter of the distribution.

The sample mean is

\[\bar{X} = \frac{X_1 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i\]

The sample variance is

\[S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2\]

Theorem: With the definition defined like above, we know a few things:

	\(\min_a \sum_{i=1}^n (x_i - a)^2 = \sum_{i=1}^n (x_i - \bar{x})^2\)

	\((n-1)s^2 = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n \bar{x}^2\)

Lemma: Let \(X_1, ..., X_n\) be a random sample from a population and let \(g(x)\) be a function such that \(Eg(X_1)\) and \(\hbox{Var} g(X_1)\) exist. Then,

\[E(\sum_{i=1}^n g(X_i)) = n(E g(X_1))\]

\[\hbox{Var}(\sum_{i=1}^n g(X_i)) = n(\hbox{Var} g(X_1))\]

Theorem: With \(X_1, ..., X_n\) as a random sample and population with mean \(\mu\) and variance \(\sigma^2<\infty\),

	\(E \bar{X} = \mu\)

	\(\hbox{Var} \bar{X} = \frac{\sigma^2}{n}\)

	\(E S^2 = \sigma^2\)

In relationship (c), we see why \(S^2\) requires a \(\frac{1}{n-1}\):

\[\begin{split}\begin{align*}
ES^2 &= E(\frac{1}{n-1} [\sum_{i=1}^n X_i^2 - n \bar{X}^2])\\
&= \frac{1}{n-1} (n E X_1^2 - n E \bar{X}^2)\\
&= \frac{1}{n-1} (n(\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2))\\
&= \sigma^2\\
\end{align*}\end{split}\]

Distribution of statistics

Example: since \(\bar{X} = \frac{1}{n}(X_1 + ... + X_n)\), if \(f(y)\) is the pdf of \(Y = (X_1 + ... + X_n)\), then \(f_{\bar{X}}(x) = nf(nx)\) is the pdf of \(\bar{X}\). We can prove this using the transformation equation from chapter 4.3.2:

We say that \(\bar{X} = g(Y) = (1/n)Y\). Therefore, \(g^{-1}(\bar{X}) = n\bar{X}\)

\(f_{\bar{X}}(x) = f_{Y}(n\bar{X}) |n|\)

Additionally, this can be conducted for mgfs:

\[M_{\bar{X}}(t) = Ee^{t\bar{X}} = Ee^{t(X_1 + ... + X_n)/n} = Ee^{(t/n)Y} = M_Y(t/n)\]

Since \(X_1, ..., X_n\) are iid, then this is true.

Theorem: However, if they are just from a random sample from a population with mgf \(M_X(t)\), then the mgf of the sample mean is:

\[M_{\bar{X}}(t) = [M_X(t/n)]^n\]

This can be useful in cases where \(M_{\bar{X}}(t)\) is a familiar mgf, for instance:

Example: Distribution of the mean

Let \(X_1, ..., X_n\) be a random sample from a \(n(\mu, \sigma^2)\) population. Then, the mgf of the sample mean is

\[\begin{split}\begin{align*}
M_{\bar{X}}(t) &= [\exp(\mu \frac{t}{n} + \frac{\sigma^2(t/n)^2}{2})]^n\\
&= \exp(n(\mu\frac{t}{n} + \frac{\sigma^2(t/n)^2}{2}))\\
&= \exp(\mu t + \frac{(\sigma^2/n)t^2}{2})\\
\end{align*}\end{split}\]

This also works for a random sample of \(\gamma(\alpha,\beta)\) (see Example 5.2.8)

Definition: Check if pdf is member of exponential family

Suppose \(X_1, ..., X_n\) is a random sample from a pdf or pmf \(f(x|\theta)\), where

\[f(x|\theta) = h(x)c(\theta) \exp(\sum_{i=1}^k w_i(\theta) t_i(x))\]

is a member of an exponential family. Define statistics \(T_1, ..., T_k\) by

\[T_i(X_1, ..., X_n) = \sum_{j=1}^n t_i(X_j)\]

where \(i=1,...,k\).

If the set \(\{(w_1(\theta) w_2(\theta), ..., w_k(\theta)), \theta \in \Theta\}\) contains an open subset of \(\mathbf{R}^k\), then the distribution of \((T_1,...,T_k)\) is an exponential family of the form

\[f_{T}(u_1,...,u_k|\theta) = H(u_1,...,u_k)[c(\theta)]^n \exp(\sum_{i=1}^k w_i(\theta)u_i)\]

The open set condition eliminates a density such as the \(n(\theta, \theta^2)\) and, in general, eliminates curved exponential families.

Example: Sum of bernuolli rvs

Suppose \(X_1, ..., X_n\) is a random sample from a \(Bernuolli(p)\). We know that

\[\begin{split}\begin{align*}
f(x|p) &= {n \choose x} p^x (1-p)^{n-x}\\
&= {n \choose x} (1 - p)^n (\frac{p}{1-p})^x\\
&= {n \choose x} (1 - p)^n \exp(\log(\frac{p}{1-p})x)\\
\end{align*}\end{split}\]

We can see that this is a exponential family where (if \(n=1\), because \(Bernuolli(p) \sim Binomial(1,p)\))

\[\begin{split}h(x) =\begin{cases}
{n \choose x} & x=0,...,n\\
0 & \hbox{o.w.}
\end{cases}\end{split}\]

\(c(p) = (1-p)^n, 0<p<1\)

\(w_1(p) = \log(\frac{p}{1-p}), 0<p<1\)

\(t_1(x) = x\)

Thus, from the previous theorem, \(T_1(X_1,...,X_n) = X_1 + ... + X_n\). From the definition of a binomial distribution, we know that \(T_1\) has a \(binomial(n,p)\) distribution, which we have already shown is an exponential family. This verifies the theorem shown above.

Properties: of sample mean and variance

	\(\bar{X}\) and \(S^2\) are independent random variables

	\(\bar{X}\) has a \(n(\mu, \sigma^2/n)\) distribution

	\((n-1)S^2/\sigma^2 \sim \chi_{n-1}^2\)

Some distribution facts

Facts: about \(\chi_p^2\) distribution with \(p\) dof

	If \(Z\) is a \(n(0,1)\) rv, then \(Z^2 \sim \chi_1^2\)

	If \(X_1, ..., X_n\) are independent and \(X_i \sim \chi_{p_i}^2\) then \(X_1 + ... X_n \sim \chi^2_{p_1 + ... p_n}\); so, independent chi-squared variables add to a chi-squared variable AND the dof also add.

Definition: Student’s t-distribution

Instead of looking at the \(n(\mu, \sigma^2)\),

\[\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\]

where we can use our knowledge of \(\sigma\) and our measurement of \(\bar{X}\) as a basis to determine \(\mu\), we can look at a distribution where \(\mu\) and \(\sigma\) are unknown:

\[\frac{\bar{X} - \mu}{S /\sqrt{n}}\]

Properties: of t-distribution

	Has no mgf becasue it does not have moments of all orders. If it has \(p\) degrees of freedom, it only has \(p-1\) moments. For instance, \(t_1\) has no mean and \(t_2\) has no variance.

Definition: F-distribution

Built by a ratio of variances. See Definition 5.3.6

This distribution has a few important corollaries:

	If \(X \sim F_{p,q}\), then \(\frac{1}{X} \sim F_{q,p}\)

	If \(X \sim t_q\), then \(X^2 \sim F_{1,q}\)

	If \(X \sim F_{p,q}\), then \(\frac{p}{q} \frac{X}{1 + (p/q)X} \sim beta(p/2, q/2)\)

Order statistics

Organize the random variables by size: \(X_{(1)} \leq ... \leq X_{(n)}\)

We know the pdf of \(X_{(j)}\) of a random sample \(X_1, ..., X_n\) from a continuous population with cdf \(F_X(x)\) and pdf \(f_X(x)\) is

\[f_{X_{(j)}}(x) = \frac{n!}{(j-1)!(n-j)!} f_X(x) [F_X(x)]^{j-1} [1 - F_X(x)]^{n-j}\]

and the joint pdf of \(X_{(i)}\) and \(X_{(j)}\), \(1 \leq i \leq j \leq n\) is

\[f_{X_{(i)}, X_{(j)}}(u, v) = \frac{n!}{(i-1)!(j-1-i)!(n-j)!} f_X(u) f_X(v) [F_X(u)]^{i-1} \times [F_X(v) - F_X(u)]^{j-1-i} [1 - F_X(v)]^{n-j}\]

Convergence

Definition: Convergence in probability

Weak law of large numbers (WLLN) says that \(\lim_{n\xrightarrow[]{}\infty}P(|\bar{X}_n - \mu| < \epsilon) = 1\). That is, \(\bar{X}_n\) converges in probability to \(\mu\). So, \textbf{convergence in probability} is \(\lim_{n\xrightarrow[]{}\infty} P(w \in S |X_n(w) - X(w)| \geq \epsilon) = 0\) where \(w\) is all the solutions in the set. I.e. for \(\Sigma X_i = 4\), the set could be \(\{(1,1,1,1), (2,2), \hbox{etc.}\}\)

Definition: Convergence almost surely

A stronger definition of convergence (yet, it does not need to converge on a set with probability 0) says that a sequence of RVs \textbf{converges almost surely} to a random variable X if \(P(\lim_{n\xrightarrow[]{}\infty}|X_n - X| < \epsilon) = 1\). Moving the limit inside gives it a more strict definition.

Definition: Convergence in distribution

A sequence of RVs converge in distribution to a random variable X if \(\lim_{n\xrightarrow[]{}\infty}F_{X_n}(x) = F_X(x)\). The CDFs converge.

Proving Tools

Definition: Slutsky’s Theorem

If \(X_n \xrightarrow{} X\) in distribution and \(Y_n \xrightarrow{} a\), a constant, in probability, then

	\(Y_n X_n \xrightarrow{} a X\) in distribution

	\(X_n + Y_n \xrightarrow{} X + a\) in distribution

Definition: Delta method

Let \(Y_n\) be a sequence of rvs that satisfies \(\sqrt{n} (Y_n - \theta) \xrightarrow{} n(0, \sigma^2)\) in distribution. For a given function \(g\) and a specific value of \(\theta\), suppose that \(g^\prime(\theta)\) exists and is not 0. Then, \(\sqrt{n}[g(Y_n) - g(\theta)] \xrightarrow{} n(0, \sigma^2[g^\prime(\theta)]^2)\) in distribution.

Principles of Data Reduction

We are interested in methods of data reduction that do not discard important information about the unknown parameter \(\theta\) and methods that successfully discard information that is irrelevant as far as gaining knowledge about \(\theta\) is concerned.

	Sufficiency: data reduction that does not discard information about \(\theta\) while achieving some summarization of the data

	Likelihood: a function of the parameter, obtained by the observed sample, that contains all the information about \(\theta\) that is available from the sample

	Equivariance: preserve important features of the model

Sufficiency

If \(T(\mathbf{X})\) is a sufficient statistic for \(\theta\) then any inference about \(\theta\) should depend on the sample \(\mathbf{X}\) only through the value \(T(\mathbf{X})\). That is, if \(\mathbf{x}\) and \(\mathbf{y}\) are two sample points such that \(T(\mathbf{x}) = T(\mathbf{y})\) then the inference about \(\theta\) shoud be the ame whether \(\mathbf{X}=\mathbf{x}\) or \(\mathbf{X}=\mathbf{y}\) is observed.

A statistic \(T(\mathbf{X})\) is a sufficient statistic for \(\theta\)

	if the conditional distribution of the sample \(\mathbf{X}\) given the value of \(T(\mathbf{X})\) does not depend on \(\theta\)

	if \(p(\mathbf{x}|\theta)\) is the joint pdf/pmf of \(\mathbf{X}\) and \(q(t|\theta)\) is the pdf/pmf of \(T(\mathbf{X})\) and if, for every \(\mathbf{x}\) in the sample space, the ratio \(p(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)\) is constant as a function of \(\theta\) (aka, does not depend on \(\theta\)).

Definition: Determine if sufficient statistic

Factorization Theorem: (no prereq)

\[f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta) h(\mathbf{x})\]

For exponential family pdfs:

\[f(x|\mathbf{\theta}) = h(x) c(\theta) \exp(\sum_{i=1}^k w_i(\mathbf{\theta}) t_i(x))\]

where \(\mathbf{\theta} = (\theta_1, ..., \theta_d), d \leq k\). Then,

\[T(\mathbf{X}) = (\sum_{j=1}^n t_1(X_j), ..., \sum_{j=1}^n t_k(X_j))\]

is a sufficient statistic for \(\mathbf{\theta}\).

Definition: Minimal sufficient statistic

General: (no prereq)

A sufficient statistic \(T(\mathbf{X})\) is a minimal sufficient statistic if, for any other sufficient statistic \(T^\prime(\mathbf{X})\), \(T(\mathbf{x})\) is a function \(T^\prime(\mathbf{x})\).

General: (no prereq)

Let \(f(\mathbf{x}|\theta)\) be the pmf or pdf of a sample \(\mathbf{X}\). Suppose there exists a function \(T(\mathbf{x})\) st, for every two sample points \(\mathbf{x}\) and \(\mathbf{y}\), the ratio \(f(\mathbf{x}|\theta) / f(\mathbf{y}|\theta)\) is constant as a function of \(\theta\) iff \(T(\mathbf{x}) = T(\mathbf{y})\). Then, \(T(\mathbf{X})\) is a minimal sufficient statistic for \(\theta\).

Therefore, show \(\frac{f(\textbf{x}|\theta)}{f(\textbf{y}|\theta)} = \frac{g^\prime(T^\prime(\textbf{x})|\theta)h^\prime(\textbf{x})}{g^\prime(T^\prime(\textbf{y})|\theta)h^\prime(\textbf{y})} = \frac{h^\prime(\textbf{x})}{h^\prime(\textbf{y})}\) does not depend on \(\theta\). Therefore, \(T(\textbf{x}) = T(\textbf{y})\). Thus, \(T(\textbf{x})\) is a function of \(T^\prime(\textbf{x})\) and \(T(\textbf{x}) (6.2.13)\)

Other properties

Definition: Ancillary statistics

A statistic \(S(\mathbf{X})\) whose distribution does not depend on the parameter \(\theta\) is called an ancillary statistic.

Prove that the statistic does not depend on \(\theta\). Derive \(f(T(X)|\theta)\) and check whether \(\theta\) is in it. Using Basu’s theorem, if \(T(\textbf{X})\) is a complete and minimal sufficient statistic, then \(T(\textbf{X})\) is independent of every ancillary statistic.

Definition: Complete statistic

Let \(f(t|\theta)\) be a family of pdfs or pmfs for a statistic \(T(\mathbf{X})\). The family of probability distributions is called complete if \(E_\theta g(T) = 0\) for all \(\theta\) implies \(P_\theta(g(T) = 0) = 1\) for all \(\theta\). Equivalently, \(T(\mathbf{X})\) is called a complete statistic.

General: (no prereq)

Basu’s theorem

For exponential pdfs:

\[f(x|\mathbf{\theta}) = h(x) c(\mathbf{\theta}) \exp(\sum_{i=1}^k w(\theta_j) t_j(x))\]

where $:nbsphinx-math:mathbf{theta} = (\theta_1, …, \theta_k). Then the statistic

\[T(\mathbf{X}) = (\sum_{i=1}^n t_1(X_i), ..., \sum_{i=1}^n t_k(X_i))\]

is complete as long as the parameter space \(\Theta\) contains an open set in \(\mathbf{R}^k\).

Likelihood

Let \(f(\mathbf{x}|\theta)\) denote the joint pdf/pmf of the sample \(\mathbf{X} = (X_1, ..., X_n)\). Then, given that \(\mathbf{X} = \mathbf{x}\) is observed the function of \(\theta\) is defined by

\[L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)\]

is called the likelihood function.

Definition: Likelihood principle

If \(\mathbf{x}\) and \(\mathbf{y}\) are two sample points st \(L(\theta|\mathbf{x})\) is proportional to \(L(\theta|\mathbf{y})\), that is, there exists a constant \(C(\mathbf{x},\mathbf{y})\) st

\[L(\theta|\mathbf{x}) = C(\mathbf{x},\mathbf{y}) L(\theta|\mathbf{y})\]

for all \(\theta\), then the conclusions drawn from \(\mathbf{x}\) and \(\mathbf{y}\) should be identical.

If \(C(\mathbf{x},\mathbf{y}) = 1\), then the likelihood principle states that if two sample points result in the same likelihood function, then they contain the same information about \(\theta\). But, this can be taken further: the principle states that even if two sample points have only proportional likelihoods, then they contain equivalent information about \(\theta\). The plausibility can be observed by the proportion. For instance, if
\(L(\theta_2|\mathbf{x}) = 2L(\theta_1|\mathbf{x})\) then \(\theta_2\) is said to be twice as plausible as \(\theta_1\).

The fiducial inference sometime interprets likelihoods as probabilities for \(\theta\). That is, \(L(\theta|\mathbf{x})\) is multiplied by \(M(\mathbf{x}) = (\int_{-\infty}^\infty L(\theta|\mathbf{x})d\theta)^{-1}\) and then \(M(\mathbf{x})L(\theta|\mathbf{x})\) is interpreted as a pdf for \(\theta\) (if \(M(\mathbf{x})\) is finite).

Equivariance

If \(\mathbf{Y} = g(\mathbf{X})\) is a change of measurement scale st the model for \(\mathbf{Y}\) has the same formal structure as the model for \(\mathbf{X}\), then an inference procedure should be both measurement equivariant and formally equivariant.

Point Estimation

A point estimator is any function \(W(X_1, ..., X_n)\) of a sample; that is, any statistic is a point estimator.

There exist three ways of finding estimators: 1) Method of Moments, 2) Maximum Likelihood Estimation, and 3) Bayes’

Method of moments (MOM)

Let \(X_1, ..., X_n\) be a sample from a population with pdf/pmf \(f(x|\theta_1,...,\theta_k)\). MOM estimators are found by equating the first \(k\) sample moments to the corresponding \(k\) population moments, and solving the resulting system of simultaneous equations.

\[\begin{split}\begin{cases}
m_1 = \frac{1}{n} \sum_{i=1}^n X_i^1, & \mu_1^\prime = EX^1\\
m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2, & \mu_2^\prime = EX^2\\
\vdots\\
m_k = \frac{1}{n} \sum_{i=1}^n X_i^k, & \mu_k^\prime = EX^k\\
\end{cases}\end{split}\]

Maximum likelihood estimation (MLE)

Get \(L(\theta | \mathbf{x})\), then \(\ln L(\theta | \mathbf{x})\), then observe \(\frac{d}{d\theta} \ln L(\theta | \mathbf{x})\) domain and find the MLE. Check endpoints.

Bayes

\(\hbox{posterior} = \pi(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)\pi(\theta) / m(\mathbf{x})\)

where \(f(\mathbf{x}|\theta)\pi(\theta) = f(\mathbf{x},\theta)\), the joint PDF and the marginal PDF \(m(\mathbf{x}) = \int f(x|\theta) \pi(\theta) d\theta\). \(\pi(\theta)\) is your prior distribution.

Definition: Let \(\mathbf{F}\) denote the class of pdfs or pmfs \(f(x|\theta)\) (indexed by \(\theta\)). A class \(\Pi\) of prior distributions is a conjugate family for \(\mathbf{F}\) if the posterior distribution is in the class \(\Pi\) for all \(f \in \mathbf{F}\), all priors in \(\Pi\) and all \(x \in \mathbf{X}\).

For instance, the beta family is conjugate for the binomial family. Thus, if we start with a beta prior, we will end up with a beta posterior.

Examples Finding Estimators

Example: Normal distribution

MOM

If \(X_1, ..., X_n\) are iid \(n(\theta,\sigma^2)\), then \(\theta_1 = \theta\) and \(\theta_2 = \sigma^2\). We have \(m_1 = \bar{X}, m_2 = \frac{1}{n} \sum X_i^2, \mu_1^\prime = \theta, \mu_2^\prime = \theta^2 + \sigma^2\), and hence we must solve

\[\bar{X} = \theta\]

\[\frac{1}{n} \sum X_i^2 = \theta^2 + \sigma^2\]

Solving for \(\theta\) and \(\sigma^2\) yields the MOM estimators:

\[\vec{\theta} = \bar{X}\]

\[\vec{\sigma}^2 = \frac{1}{n} \sum X_i^2 - \bar{X}^2 = \frac{1}{n} \sum(X_i - \bar{X})^2\]

Bayes

(Example 7.2.16) Let \(X \sim n(\theta, \sigma^2)\) and suppose that the prior distribution on \(\theta\) is \(n(\mu, \tau^2)\). Here, we assume all the parameters are known. The posterior distribution of \(\theta\) is also normal with mean and variance given by

\[\pi(\theta) = \frac{1}{\sqrt{2\pi}\tau} \exp(-\frac{1}{2\tau^2} (\theta - \mu)^2)\]

\[f(x|\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2} (x - \theta)^2)\]

Step 1: evaluate the posterior \(\pi(\theta|\vec{x}) = \frac{f(x|\theta) \pi(\theta)}{m(x)}\). Or, since \(m(x)\) is not dependent on \(\theta\), we can just evaluate the joint distribution \(f(x,\theta) = f(x|\theta) \pi(\theta)\).

\[\begin{split}\begin{align*}
f(x,\theta) &= [\frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{1}{2\sigma^2} (x - \theta)^2)] [\frac{1}{\sqrt{2\pi}\tau} \exp(-\frac{1}{2\tau^2} (\theta - \mu)^2)]\\
&= \frac{1}{2\pi\sigma\tau} \exp(-\frac{1}{2\sigma^2} (x - \theta)^2 - \frac{1}{2\tau^2} (\theta - \mu)^2)\\
&= \frac{1}{2\pi\sigma\tau} \exp(-\frac{1}{2\sigma^2} (x^2 - 2x\theta + \theta^2) - \frac{1}{2\tau^2} (\theta^2 - 2\theta\mu + \mu^2))\\
&= \frac{1}{2\pi\sigma\tau} \exp(-\frac{1}{2\sigma^2} (x^2 - 2x\theta + \theta^2) - \frac{1}{2\tau^2} (\theta^2 - 2\theta\mu + \mu^2))\\
&= \frac{1}{2\pi\sigma\tau} \exp(-\frac{x^2}{2\sigma^2} + \frac{2x\theta}{2\sigma^2} - \frac{\theta^2}{2\sigma^2} - \frac{\theta^2}{2\tau^2} + \frac{2\theta\mu}{2\tau^2} - \frac{\mu^2}{2\tau^2})\\
&= \frac{1}{2\pi\sigma\tau} \exp(\theta^2(- \frac{1}{2\sigma^2} - \frac{1}{2\tau^2}) + \theta(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2}) - \frac{\mu^2}{2\tau^2} -\frac{x^2}{2\sigma^2})\\
&= \frac{1}{2\pi\sigma\tau} \exp(-\theta^2(\frac{1}{2\sigma^2} + \frac{1}{2\tau^2})) \times \exp(\theta(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2})) \times \exp(- \frac{\mu^2}{2\tau^2} - \frac{x^2}{2\sigma^2})\\
\end{align*}\end{split}\]

Step 1b: Find \(m(x) = \int f(x|\theta) \pi(\theta) d\theta = \int f(x,\theta) d\theta\).

\[\begin{split}\begin{align*}
m(x) &= \int f(x,\theta) d\theta\\
&= \frac{1}{2\pi\sigma\tau} \exp(-\theta^2(\frac{1}{2\sigma^2} + \frac{1}{2\tau^2})) \times \exp(\theta(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2})) \times \exp(- \frac{\mu^2}{2\tau^2} - \frac{x^2}{2\sigma^2})\\
& \textcolor{red}{\hbox{This is a hard integral which is okay because we don't need it!}}
\end{align*}\end{split}\]

We can continue to boil down the joing \(f(x,\theta)\)

\[\begin{split}\begin{align*}
f(x,\theta) &= \frac{1}{2\pi\sigma\tau} \exp(\theta^2(- \frac{1}{2\sigma^2} - \frac{1}{2\tau^2}) + \theta(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2}) - \frac{\mu^2}{2\tau^2} -\frac{x^2}{2\sigma^2})\\
&= ...\\
&\sim N(\frac{\tau^2 x + \sigma^2 \mu}{\tau^2 + \sigma^2}, \frac{\sigma^2 \tau^2}{\tau + \sigma^2}) \times N(\mu, \tau^2 + \sigma^2)\\
\end{align*}\end{split}\]

Therefore, we can find the mean and variance

\[E(\theta|x) = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu\]

\[Var(\theta|x) = \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}\]

When have \(tau^2\) near 0, the weight on \(\bar{x}\) is 0 and the weight on \(\mu\) is 1.

The normal family is its own conjugate.

Example: Let \(X_1, ..., X_n\) be iid \(binomial(k,p)\), that is,

\[P(X_i=x|k,p) = {k \choose x} p^x (1-p)^{k-x}\]

on \(x = 0,1,...,k\).

We desire point estimators for both \(k\) and \(p\). We start with the population yields:

\[\bar{X} = kp\]

\[\frac{1}{n}\sum X_i^2 = kp(1-p) + k^2 p^2\]

Or more simply,

\[\frac{1}{n} \sum(X_i - \bar{X})^2 = kp(1-p)\]

With these definitions, we can build parameter estimates

\[\vec{p} = 1 - \frac{\frac{1}{n} \sum(X_i - \bar{X})^2}{\bar{X}}\]

\[\vec{n} = \frac{\bar{X}}{\vec{p}}\]

Metrics for evaluating estimators

Definition: Mean squared error (MSE)

The MSE of an estimator \(W\) of a parameter \(\theta\) is a function of \(\theta\) defined by \(E_\theta (W - \theta)^2\).

\[E_\theta (W-\theta)^2 = Var_\theta W + (E_\theta W - \theta)^2 = Var_\theta W + (Bias_\theta W)^2\]

This is usually a balancing act.

Note: for an unbiased (\(Bias_\theta = 0\)) estimator, we have

\[E_\theta(W-\theta)^2 = Var_\theta W\]

Example: Normal MSE

Let \(X_1, ..., X_n\) be iid \(n(\mu, \sigma^2)\). The statistics \(\bar{X}\) and \(S^2\) are both unbiased estimators since

\[E\bar{X} = \mu\]

\[E S^2 = \sigma^2\]

for all \(\mu\) and \(\sigma^2\). This is always true!!

This is true without the normality assumption. The MSE of these estimators are

\[MSE_\mu (\bar{X}_n) = E(\bar{X} - \mu)^2 = Var \bar{X} = \frac{\sigma^2}{n}\]

This goes to 0 as \(n \xrightarrow{} \infty\).

\[MSE_{\sigma^2}(S_n^2) = E(S^2 - \sigma^2)^2 = Var S^2 = \frac{2 \sigma^4}{n-1}\]

For a non-normal case, this is \(MSE_{\sigma^2}(S_n^2) = \frac{1}{n}(\theta_4 - \frac{n-3}{n-1} \theta_2^2)\)

Example: \(MSE(\hat{\sigma}^2) < MSE(S^2)\)

We know the MLE of \(\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} \sigma^2\).

\[E \hat{\sigma^2} = E(\frac{n-1}{n} S^2) = \frac{n-1}{n} \sigma^2\]

So, \(\hat{\sigma^2}\) is a biased estimator of \(\sigma^2\). The variance of \(\hat{\sigma^2}\) can be calculated

\[Var \hat{\sigma^2} = Var(\frac{n-1}{n} S^2) = (\frac{n-1}{n})^2 Var S^2 = \frac{2(n-1)\sigma^4}{n^2}\]

because \(Var S^2 = \frac{1}{n}(\theta_4 - \frac{n-3}{n-1} \theta_2^2)\), from above.

Therefore, the \(MSE\) is given by

\[E(\hat{\sigma^2} - \sigma^2)^2 = Var(\frac{n-1}{n} S^2) = \frac{2(n-1)\sigma^4}{n^2} + (\frac{n-1}{n} \sigma^2 - \sigma^2)^2 = (\frac{2n-1}{n^2})\sigma^4\]

Conclusions about MSE:

	Small inccrease in bias can be traded for a large decrease in variance resulting in a smaller MSE.

	Because MSE is a function of the parameter, there is often not one best esetimator. Often, the MSEs of two estimators will cross each other, showing that each estimator is better (wrt the other) in only a portion of the parameter space.

This second bullet point is why we discuss other tactics of finding the best estimator… see next!

Definition: Best unbiased estimator

We want to recommend a candidate estimator. Specifically, we consider unbiased estimators. So, if both \(W_1\) and \(W_2\) are unbiased estimators of a parameter \(\theta\), that is, \(E_\theta W_1 = E_\theta W_2 = \theta\), then their MSE are equal to their variances, so we should choose the estimator with the smaller variance.

 Theoretical Statistics Questions

Theoretical Statistics Questions

Is a pdf part of the exponential family?

Equation 3.4.1

Is a statistic complete?

	If distribution part of the exponential family:

Theorem 6.2.25

	If not:

Theorem 6.2.21

Is a statistic sufficient?

	If distribution part of the exponential family:

Theorem 6.2.10

	If not:

Factorization theorem (Theorem 6.2.6)

Is a statistic unbiased?

\(E[T] = \int_{x \in R} x g_T(X|\theta) dx\)

If \(E[g(T)] = \theta\), then unbiased.

To find the expected value, sometimes it is helpful to route thru the moment and use \(M_{\sum X_i}(t) = M_{X_i}(t)^n\); for instance, if you know the pdf of X_i but the statistic is \(\sum X_i\).

Does a statistic converge in probability as \(n \xrightarrow{} \infty\)

Convergence in probability (Definition 5.5.1)

But, we are looking at the difference of \(T\) and \(\theta\) instead.

Usually, like this:

\(P(|T - \theta| \geq \epsilon) = P((T - \theta)^2 \geq \epsilon^2) = P(Var[T] \geq \epsilon^2)\)

So, calculate the variance (\(VarT = E[T^2] - E[T]^2\)) and if this (markov’s inequality, lemma 3.8.3, applied in example 5.5.3) holds up:

\(P(|T - \theta| \geq \epsilon) \leq \lim_{n\xrightarrow{}\infty} [Var[T] / \epsilon^2] = 0\)

then it converges in probability, so \(T \xrightarrow[p]{} \theta\).

Find unique best unbiased estimator of \(\theta\).

Theorem 7.3.23

Find suff. statistic \(T\). Get its distribution \(g(t|\theta)\). Find \(E[T(\vec{x})] = \hbox{ (say) } 2n\theta\). With this, we solve for \(\theta\). This becomes \(\phi(T) = \frac{T}{2n}\). Then, verify \(E[\phi(T)] = \theta\).

Find MLE

	Solution not solvable directly (i.e. pdf has indicator function with support containing parameter)

Look at function and think about maximum (yes.. it’s vague).

	Normal solutions

Find \(\frac{d}{d\theta} [\ln L(\theta|\vec{x})] = 0\), confirm \(\frac{d}{d\theta^2} [\ln L(\theta=\hat{\theta}|\vec{x})] < 0\), evaluate boundary conditions \(\lim_{\theta \xrightarrow{} \hbox{ upper}} [L(\theta|\vec{x})] = \lim_{\theta \xrightarrow{} \hbox{ lower}} [L(\theta|\vec{x})] = 0\)

Find MOM

Define pdf/pmf-specific expected value:

\(\mu = E(X^1) = \int \hbox{ or } \sum = \hbox{func}(\theta)\)

Set that equal to \(\frac{1}{n} \sum_{i=1}^n x_i^1\)

solve for \(\theta\).

If solving for variance, do the same but use \(X^2\) in both places.

Find CRLB (variance bound)

7.3.10 and, if exponential fam, 7.3.11 helps.

If it’s a series of n RV’s, make sure to multiply by n (e.g. 7.3.12)

Check regularity condition: \(E[\frac{d}{d\theta} \ln p(x;\theta)] = 0\)

Find statistic at CRLB

7.3.15 (but have to prove W(X) is unbiased)

Can calculate Var(W(X)) for variance lower bound also.

Best unbiased of \(\tau(\theta)\)

Rao-Blackwell (7.3.17)

	Find complete suff stat \(T\) for \(\theta\)

	Compute \(E(T)\)

	If \(E(T) = a + b \tau(\theta)\), then the UMVUE of \(T(\theta)\) is \(\phi(\tau) = \frac{\tau-a}{b}\)

	If \(E(T) \neq a + b \tau(\theta)\). Find an unbiased estimator of \(\tau(\theta)\). Compute \(\phi(T) = E[W|T]\).

Find an LRT of size 0.05

Find the likelihood function, find MLE \(\hat{\theta}\), build \(\lambda = \frac{L(\theta_0|\vec{x})}{L(\hat{\theta}|\vec{x})}\).

evaluate boundary conditions \(\lim_{\theta \xrightarrow{} \hbox{ upper}} [L(\theta|\vec{x})] = \lim_{\theta \xrightarrow{} \hbox{ lower}} [L(\theta|\vec{x})] = 0\)

Derive level \(\alpha\) UMP test of \(H_0\) and \(H_1\).

	Find sufficient statistic, \(T\), (either Factorization theorem or Exponential family proxy)

	Find distribution \(g(T|\theta)\)

	the suff. stat \(T\) is the transformation from \(Y = g(X) = T(\vec{x})\). Just, remove summations from it during this initial transformation. Once transformed, usually want to find distribution it follows and then apply summations afterwards using properties of that distribution (e.g., the summation of exponentials is a gamma).

	Verify MLR with Definition 8.3.16, usually want to take \(\frac{d}{dt}\) and verify if always positive or negative.

	Apply Karlin-Rubin with Theorem 8.3.17.

If \(\theta \geq \theta_0\), then the rejection region \(R = \{ \vec{x}: T(\vec{x}) < t_0\}\) and \(\alpha = P_{\theta_0}(T(\vec{x}) < t_0 | \theta \geq \theta_0) = F_T(t|\theta \geq \theta_0) = \int_{-\infty}^{t_0} g(T|\theta) dt\).

Find a pivot quantity and its distribution

	Find MLE.

	Find pdf of MLE.

	Transform this pdf \(X \xrightarrow{} Z\) (where the transformation \(Z = g(X;\theta)\) is the pivot). This pivot \(Z\) should be dependent on both \(X\) and \(\theta\).

	Show this pdf \(f_Z(z)\) is not dependent on the parameter \(\theta\)

	Use equation 9.2.11.

Find a pivotal interval of \(\theta\) w/ confidence coeff \((1-\alpha)\)

\(P_\theta(a \leq Q(\vec{X},\theta) \leq b) \geq 1-\alpha\). Then, replace \(Q(\vec{X},\theta)\) with the actual pivot (e.g. \(Q(\vec{X},\theta) = \frac{X}{\theta}\) and then solve for \(\theta\). This is the confidence interval. If the interval is symmetric, you can make this problem simpler by \(P_\theta(Q(\vec{X},\theta) \leq a) = P_\theta(Q(\vec{X},\theta) \geq b) = \alpha/2\)

Find smallest pivotal interval with CI \((1-\alpha)\)

See Theorem 9.2.12 (pivoting the CDF)

Evaluate the CDF of the \(Q(\vec{X},\theta)\) (take the integral from lower to x)… let’s call this \(F_{Q(\vec{X},\theta)}(x) = \int_a^x f(t)dt\)

We have \(P(a \leq Q(\vec{X},\theta) \leq b) = 1 - \alpha\)

CI region: \(\theta\) is \(\{\theta: Q^{-1}(\vec{x},a) \leq \theta \leq Q^{-1}(\vec{x},b) \}\)

CI size: \(P(a \leq Q(\vec{x},\theta) \leq b) = F_{Q(\vec{X},\theta)}(b) - F_{Q(\vec{X},\theta)}(a) = 1 - \alpha\)

Lastly, plug in the end points.

So, if (say) \(x \in (0,1)\)

	Use upper bound: then plug in \(b=1\) and solve for \(a\) using the CI size expression. Plug the a and b values into the CI region expression

	Use lower bound: then plug in \(a=0\) and solve for \(b\) using the CI size expression. Plug the a and b values into the CI region expression

Look at the interval which is smaller. And conclude that that’s the interval to choose.

 Natural Language Processing

Natural Language Processing

 Graph neural networks at scale

Graph neural networks at scale

Introduction

GNNs are unique because they leverage connectivity in addition to a typical \((X, y)\) pairs for supervised learning. A GNN utilizes a graph \(g = (X,A,y)\) to conduct a task (e.g. node classification), where \(X \in \mathbf{R}^{n\times d}\) are node features, \(A \in \mathbf{R}^{n \times n}\) are adjacencies, and \(y \in \mathbf{R}^{n,k}\) are labels. Often, an adjacency matrix is defined as \(A_{v,u} = \begin{cases}1 & u \xrightarrow{} v\\ 0 & otherwise \end{cases}\).
However, it is not rare to see an adjacency matrix where the value is a float scaler or vector.

Graph convolutional networks (Kipf and Welling, 2017)

At every layer of the GNN, we transform the information at node level into a hidden represenetation. We stack the transformations into multiple layers and then use the final hidden space to map to our final value, based on the task.

\[H^l = \sigma(S H^{(l - 1)} W_l)\]

where \(S H^{(l - 1)}\) is the aggregation (in this case, average since \(S\) is a symmetrically normalized ajacency matrix) of current representations of neighbor nodes.

This is the typical process for all GNNs. The variants change what message to send, how to aggregate messages, and how to transform the aggregated message. These changes are usually motivated by additional knowledge abou tthe process generating the graph.

This shared structure is formalized in:

Message Passing Neural Networks (Gilmer et al 2017)

For each incoming edge, generate a message to send based on the current representation of the endpoints and edge (if any)

\[m_{u\xrightarrow{} v}^{(l+1)} \overset{\Delta}{=} \phi(H_u^l, H_v^l, H_{u\xrightarrow{}v}^l)\]

Aggregate all incoming messages at a node to reduce to a single vector

\[\bar{m}_v^{(l+1)} \overset{\Delta}{=} \rho(\{m_{u\xrightarrow{}v}^{(l+1)} : u \in \mathcal{N}(v) \})\]

Apply a transformation to the aggregated messages to uipdate the node’s representation

\[H_v^{(l+1)} \overset{\Delta}{=} \psi(H_v^l, \bar{m}_v^{(l+1)})\]

GNN Scaling issues

This section will focus on scaling GNNs to large data sets. In general GNNs are not very large models (in terms of # of parameters), especially compared to the recent language models. The key bottleneck is not so much the size of the model but fitting the data into GPU memory. GPU memory pressure comes from the recursive structure of the memory passing computation that happens at each layer.

What needs to be on the GPU when training a GNN?

	Model parameters (\(W^1\), \(W^2\))

	Input data (e.g., X, y)

	Intermediate outputs (e.g. \(H^1\), \(H^2\))

	Gradients

Typically, mini-batch training is used to sample a small number of samples from the training dataset at every iteration before computing a model update. That reduces the size of the input data during training.

Overview

In GNNs, minibatches don’t give us an easy win for graphs. In order to compute the output of the given node, we have to collect nodes from its neighborhood (e.g. k-hop neighbors). This can produce a large portion of the graph if in a dense graph. “Small world” says that the distance between any two nodes in a graph only grows logarithmically with the number of nodes in the graph (e.g. if we have a graph with 10x the number of nodes, we only expect to increase the distance between two nodes by 1
hop). So, the implication is that the K-hop receptive fields for a minibatch of nodes can increase the memory requirements on the GPU by serveral orders of magnitude (beyond what we’d need just for target nodes). So in practice, we don’t get the same benefit of using minibatches directly in GNNs because of the inter-dependence of samples. This is called the receptive field problem.

Another way to get around GPU issues is to use distributed GPU learning. Data parallelism will partition the graph into parts and then pass each partition to a separate GPU. The same model architecture is trained on each partition and every once in a while they are synced by averaging (for instance) the model parameters across the different model instances. In general, this is not easy to implement because if we partition the nodes, then there will be edges between nodes on different partitions.
So, what do we do if we have to collect a message from a neighbor that lives on another partition? We can query data from different GPUs but that’s expensive. In general, data parallelism is hard to implement. As a note, if the graph is small enough to fit in host CPU memory for each GPU, then data parallelism is great to speed up GNN training.

Another way is model and pipeline parallelism. This is often used when a model is really large (for instance, large language models).

An alternative is to take a subgraph of the graph in each batch and use that for training.

Solutions

Message Flow Graphs

GraphSage (Hamilton et al 2017)

Starting with the last layer, sample k neighbor nodes to use from previous layer to compute the representation of the target node

Subgraphs

ClusterGCN (Chiang et al. 2019)

Partition nodes into K groups to find “dense subgraphs” (paper and DGL use METIS). For instance, we partition our graph into K groups, then ClusterGCN samples k groups and induce subgraph. The intuition is that if we only pass messages between nodes from one partition, then we may get a pretty good approx of the true output becasue this is a dense subset of the graph. But, occassionaly we want to reach across partitions and include info from other partions. So it controls the number of nodes on
the GPU but also allows us to get a relative representation of true nodes from the graph.

GraphSAINT: Node Sampler (Zeng et al 2020)

Sample nodes proportional to their out-degree and induce subgraph

GraphSAINT: Edge Sampler (Zeng et al 2020)

Instead of sampling nodes and then including any edges between that usbset of nodes, we are going to sample edges directly. So, sample edges with probability which is proprotional to the sum of the reciprocal of the source nodes’ out degree and the dstination nodes’ in-degree.

\[p(e) \propto \frac{1}{d_{out}}(e_u) + \frac{1}{d_{in}(e_v)}\]

Once we have a sample of edges, we are going to induce a subgraph from nodes that appear in at leat one sampled edge.

GraphSAINT: Random Walk Sampler (Zeng et al. 2020)

Randomly choose \(n\) root nodes (with replacement) and then start length \(k\) random walks from each root. Then, we induce a subgraph from the union of all visited nodes in the subgraph including the roots.

ShaDowKHop (Zeng et al 2021)

Induce a subgraph from K-hop neighborhood of sampled root nodes. E.g. sample 2 neighbors at layer 1 and 2 neighbors at layer 2, and induce subgraph. This is really similar to GraphSage. The key difference is that in GraphSage, we use the message flow graphs to only pass messages that we need to pass to compute outputs of target nodes. In ShaDowKHop, we keep the extraneous edges that might exist between two nodes that are same instance from target node and we allow messages to be exchanged.

Which to use?

Hard to predict.. but if the graph is too large, use GraphSage with as many neighbors as possible before you run out of GPU memory. Once refining hyperparameters, treat the minibatch sampler as a hyperparameter and run experiments to see which is best for problem.

Recent solutions in literature

Some recent extensions ahve been proposed in literature, namely

	reduce the variance of sample approximations

	maximize “embedding utilization” (use each node more than once if possible) - using layer sampling..

	learn to select which neighbors to include in the approximation based on the loss (similar to graph attention networks but avoiding having to compute on full graph)

Overview

Batch training

Batch training is written mathematically usually as follows:

\(\mathcal{V}\): Node set

\(|\mathcal{V}|\): Number of nodes in the graph

\(Z_v^L\): Model output for node \(v\)

\(y_v\): Label for node \(v\)

\(l\): loss function

\[\mathcal{L}_{\hbox{Batch}} = \frac{1}{|\mathcal{V}|} \sum_{v\in \mathcal{V}} l(Z_v^L, y_v)\]

Minibatch training w/ full neighbors

\(\mathcal{B}\): Minibatch of randomly selected nodes from \(\mathcal{V}\)

\(|\mathcal{B}|\): Number of sampled nodes in minibatch

\[\mathcal{L}_{MBFN}(B) = \frac{1}{|\mathcal{B}|} \sum_{v\in \mathcal{B}} l(Z_v^L, y_v)\]

MBFN is unbiased.

\[E_\mathcal{B}[\mathcal{L}_{MBFN}(\mathcal{B})] = \frac{1}{|\mathcal{B}|} \sum_{v \in \mathcal{B}} E_v [l (Z_v^L, y_v)] = \frac{1}{|\mathcal{B}|} \sum_{v \in \mathcal{B}} \mathcal{L}_{Batch} = \mathcal{L}_{Batch}\]

Minibatch training w/ sampled neighbors

\(\hat{\mathcal{N}}_L(v)\): Recursively sampled neighbors from \(v\)’s \(L\)-hop neighborhood

\(\hat{Z}_v^L\): Approximate model output for \(v\) based on sampled neighbors

\[\mathcal{Z}_{MBSN} (\mathcal{B}, \{ \hat{\mathcal{N}}_L(v) : v \in \mathcal{B} \}) = \frac{1}{|\mathcal{B}|} \sum_{v \in \mathcal{B}} l (\hat{Z}_v^L, y_v)\]

Variance reduced GCN (Chen et al 2018)

In general, MBSN loss for GCN training is biased because

\[E_{\hat{\mathcal{N}}_L(v)} [l (\hat{Z}_v^L, y_v) | v] \neq l (Z_v^L, y_v)\]

If the number of neighbors sampled at each hop from the target node is large, then the bias is small (intuition follows the continuous mapping theorem). A large sample, however, puts more memory pressure on the GPU. The goal is to reduce the bias by reducing the variance without sampling a larger numebr of nodes.

The way they do that is as follows:

Message to node \(v\) at layer \(l\) is:

\[(S H^{(l-1)})_v = \sum_{u \in \mathcal{N}(v)} S_{vu} H_u^{(l-1)}\]

With neighbor sampling, the message is approximated with

\[(S H^{(l-1)})_v \approx \frac{|\mathcal{N}(v)|}{|\mathcal{S}_l(v)|} \sum_{u \in \mathcal{S}_l(v)} S_{vu} \hat{H}_u^{(l-1)}\]

where \(\mathcal{S}_l(v)\) is the sample of neighbors of a node \(v\). The approximation of the neighbor’s representations are used also.

To reduce the variance, Chen et al. propose a control variate based on the historical embeddings of a node’s neighbors at the previous layer.

They noticed we can break each previous representation into a historical value and the difference between the historical and current value:

\[(S H^{(l-1)})_v = \sum_{u \in \mathcal{N}(v)} S_{vu} \Delta H_u^{(l-1)} + \sum_{u \in \mathcal{N}(v)} S_{vu} \hat{H}_u^{(l-1)}\]

This history value \(\hat{H}_u^{(l-1)}\) is assumed to be known. We use a cache of the \(l-1\) layer representations for all nodes. Then the model updates are pushed. Then we compute \(\Delta H_u^{(l-1)} = H_u^{l} - \hat{H}_u^{(l-1)}\) as the difference.

If we subset just the deltas, then we sample vectors with smaller overall norm, which means a smaller variance. There’s also a control variate effect. Get smaller as training converges.

\[(S H^{(l-1)})_v \approx \frac{|\mathcal{N}(v)|}{|\mathcal{S}_l(v)|} \sum_{u \in \mathcal{S}_l(v)} S_{vu} \Delta \hat{H}_u^{(l-1)} + \sum_{u \in \mathcal{N}(v)} S_{vu} \hat{H}_u^{(l-1)}\]

This uses more CPU memory (from the cache) instead of GPU memory.

Adaptive Sampling GCN (Huang et al 2018)

Even when we use GraphSage to subsample the number of neighbors at each layer, the number of intermediate nodes is still exponential in the number of layers (and we need large samples to reduce bias). Key goal: Make the number of intermediate nodes linear in the number of layers by selecting a fixed set of nodes in the previous layer for approximating messages for all nodes in the current layer. So, instead of having a multiplicative effect at every layer that we add (causing exponential
effect), we add same number of nodes at every layer independent of the number of nodes at previous layer, giving us a linear dependence. So, how do we choose a good fixed set of nodes at each layer to help approximate the representation of the layer above?

\[\begin{split}\begin{align*}
(S H^{l-1})_v &= \sum_{u \in \mathcal{N}(v)} S_{vu} H_u^{(l-1)}\\
&= |\mathcal{N}(v)| \sum_{u \in \mathcal{N}(v)} \frac{1}{|\mathcal{N}(v)|} S_{vu} H_u^{(l-1)}\\
& \hbox{p: Uniform distribution over neighbors}\\
&= |\mathcal{N}(v)| \sum_{u \in \mathcal{V}} p(u | v) S_{vu} H_u^{(l-1)}\\
&= |\mathcal{N}(v)| E_p [S_{vu} H_u^{(l-1)}]\\
& \hbox{q_l: Unspecified proposal distribution over all neighbors of node at layer l}\\
&= |\mathcal{N}(v)| E_{ql} [\hbox{p(u|v)}{q_l(u)} S_{vu} H_u^{(l-1)}]\\
\end{align*}\end{split}\]

The proposal distribution distribution that minimizes the variance for node \(v\):

\[q_l^{\star} (u) \propto p(u|v) \times ||H_u^{(l-1)}||_2^2\]

To minimize variance, we prefer to sample nodes \(u\) that have a large L2 norm in representation on the previous layer.

There are two problems with this:

	
	the optimal proposal distribution is specific to \(v\) (we want to sample from a common \(q\), not specific neighbors to node \(v\) as there could be duplicates)

	
	we need to compute the hidden representation at the previous layer for all neighbors of all nodes at the current layer (the thing we were trying to avoid!)

To sidestep these two issues, they introduce this proposal distribution:

\[q_l(u) \propto \sum_{v in layer l} p(u|v) W x_u\]

where \(W\) is the learnable \(1 \times d\) matrix. So, we are trying to predict what the norm of the hidden representation at layer \(l-1\) is, given the known feature values for node \(u\).

They augment the learning objective by minimizing the minibatch with sampled neighbors objective (from before) plus a variance penalty:

\[\frac{1}{|\mathcal{B}|} \sum_{v \in \mathcal{B}} l (\hat{Z}_v^L, y_v) + \lambda Var(\hat{Z}_v^L)\]

The variance is only computed in the final layer (not computing variance at each layer… just at last layer \(L\)). This is interesting because 1) we share/compact the nodes that we use to help approximate the last layer, 2) having a learnable distribution when choosing neighbors at every layer as we go down the stack.

Performance Adaptive Sampling (Yoon et al 2021)

Like AS-GCN, this method introduces a learnable distribution over neighbors. The key difference is PASS optimizes the distribution to directly improve performance instead of minimizing variance.

Each pre-activation hidden representation is

\[Z_v^l = \frac{1}{k} \sum_{u \in \mathcal{S}_l(v)} W_l^T H_u^{(l-1)}\]

where \(\mathcal{S}_l(v)\) is a set of neighbors sampled using a learned distribution. Specifically, the learned policy is a mixture of random sampling and “affinity” sampling. So this is a tradeoff of exploration and exploitation.

The proposal distribution at layer \(l\) over \(u\) given \(v\) is:

\[\begin{split}\begin{align*}
q^l(u|v) &= a_s \times [q_a^l (u | v), q_r^l(u|v)]^\intercal\\
q_a^l(u|v) &= (W_s H_u^0) \times (W_s H_v^0)\\
q_r^l (u|v) &= \frac{1}{\mathcal{N}(v)}\\
\end{align*}\end{split}\]

where \(a_s\) is an attention matrix. The affinity assigned weight is a dot product of the vectors obtained after passing through a linear transformation of \(W_s\) with the original hidden representations of the nodes. The sampling operation is non-differentiable, so they use REINFORCE to update the sampling distribution parameters, which does not require computing the gradients and using backpropagation.

 Contextual Bandits

Contextual Bandits

Sequential learning environment!

Agent interacts with environment. In beginning there is no data. In each round, an action is taken, and environment gives feedback.

[2]:

from utils import disp
disp('bandits_intro.drawio.png')

[image: ../_images/nblinks_ContextualBandits_1_0.png]

The environment sends noisy feedback. The agent has to learn a policy that is a way to choose the next action given the information that has been observed so far.

In a real-world setting, the environment can be a user. In this case, a delay buffer. After a while, the feedback is sent to agent which will update the policy.

How can we learn an efficient policy for the agent? And, how do we deal with delays?

Linear Bandits

	In round \(t\), observe action set \(\mathcal{A}_t \subset \mathcal{R}^d\)

	The learner chooses \(A_t \in \mathcal{A}_t\) and receives \(X_t\), satisfying

\[E[X_t | \mathcal{A}_1, A_1, ..., \mathcal{A}_t, A_t] = \bigl< A_t, \theta_\star \bigr> \coloneqq f_{\theta \star} (A_t)\]

for some unknown \(\theta_\star\).

	Light-tailed noise: \(X_t - \bigl< A_t, \theta_\star\bigr> = \eta_t \sim N(0,1)\)

Goal: Keep regret small.

\[R_n = E[\sum_{t=1}^n \max_{a \in \mathcal{A}_t} \bigl< a, \theta_\star \bigr> - X_t]\]

Regret is the cumulative sum of losses. The loss is the gap between the reward difference between what you would have got if doing it correctly from what you actually did.

The action set should be some subset. It is selected by some adversary.

Real-world setting

A typical setting is a user, represented by feature vector \(u_t\) shows up and we have a finite set of (correlated) actions \((a_1, ..., a_k)\).

Some function \(\phi\) joins these vectors pairwise to create a contextualized action set:

\(\forall i \in [K]\),

\[\phi(u_t, a_i) = a_{t,i} \in \mathcal{R}^d\]

\[\mathcal{A}_t = \{ a_{t,1}, ..., a_{t,K}\}\]

No assumption is to be made on the joining function \(\phi\) as the bandit may take over the decision step from that contexualized action set.

So, it is equivalent to \(\mathcal{A}_t \sim \Pi (\mathcal{R}^d)\) some arbitrary distribution, or \(\mathcal{A}_1, ..., \mathcal{A}_n\) fixed arbitrarily by the environment.

We want an algorithm which is robust to any choice (even sampled from any unknown distribution).

Toolbox of the optimist

To minimize the regret…

Say, reward in round \(t\) is \(X_t\), action in round \(t\) is \(A_t \in \mathcal{R}^d\):

\[X_t = \bigl< A_t, \theta_\star \bigr> + \eta_t\]

We want to estimate \(\theta_\star\): regularized leat-squares estimator:

\[\hat{\theta}_t = V_t^{-1} \sum_{s=1}^t A_s X_s\]

\[V_0 = \lambda I\]

\[V_t = V_0 + \sum_{s=1}^t A_s A_s^\intercal\]

Choice of confidence regions (ellipsoids) \(\mathcal{C}_t\):

\[\mathcal{C}_t \dot{=} \biggl\{ \theta \in \mathcal{R}^d : || \theta - \hat{\theta}_{t-1} ||_{V_{t-1}}^2 \leq \beta_t \biggr\}\]

where, for \(A\) positive definite, \(||x||_{A}^2 = x^\intercal A x\).

Immediately, we can see that \(\beta_t\) is a very important hyperparameter.

LinUCB

“Choose the best action in the best environment amongst the plausible ones.”

Choose \(\mathcal{C}_t\) with suitable \((\beta_t)_t\) and let

\[A_t = \argmax_{a \in \mathcal{A}} \max_{\theta \in \mathcal{C}_t} \bigl< a, \theta \bigr>\]

Or, more concretely, for each action \(a \in \mathcal{A}\), compute the “optimistic index”

\[U_t(a) = \max_{\theta \in \mathcal{C}_t} \bigl< a, \theta \bigr>\]

Maximising a linear function over a convex closed set, the solution is explicit:

\[A_t = \argmax_{a} U_t(a) = \argmax_{a} \bigl< a, \hat{\theta}_t \bigr> + \sqrt{\beta_t} ||a||_{V_{t-1}^{-1}}\]

At round \(t\), I have an estimator (red dot) \(\hat{\theta}_t\) which is encompassed by a confidence ellipsoid (here it is round because we have Tikhonov regularization, which uses \(\lambda I\)) and at round \(t\) for each green dot (i.e. actions, or arms), we compute an index and choose a vector (red circle around green arm dot) which is \(a_{1,t} = A_t\) which has the best scalar product with \(\theta\).

[3]:

disp('bandit_uncertainty_principle.png')

[image: ../_images/nblinks_ContextualBandits_4_0.png]

In beginning, we have confidence elliposid which is round. But then we pull the action in direction of the action that gives a lot of reward. But, sometimes this chooses an action which is bad and it increases the uncertainty which makes it rounder. This is how we regulate exploration vs exploitation.

Exploitation pulls in direction which makes it ovular and exploration is when we reshape the ellipsoid of competence.

[4]:

disp('bandits_uncertainty_principle_laterepoch.png')

[image: ../_images/nblinks_ContextualBandits_6_0.png]

Regret bound

So what is the regret of linearity?

We first make a few assumptions that the rewards and parameters are bounded, namely:

	Bounded scalar mean reward: \(|\bigl< a, \theta_\star \bigr>| \leq 1\) for any \(a \in \cup_t A_t\)

	Bounded actions: for any \(a \in \cup_t \mathcal{A}_t\), \(||a||_2 \leq L\)

	Honest confidence intervals: There exists a \(\delta \in (0, 1)\) such that with probability \(1 - \delta\) for all \(t \in [n]\), \(\theta_\star \in \mathcal{C}_t\) for some choice of \((\beta_t)_{t \leq n}\)

Theorem (LinUCB Regret)

Let the conditions listed above hold. Then with \(1 - \delta\) the regret of LinUCB satisfies

\[\hat{R}_n \leq \sqrt{8dn\beta_n \log \biggl(\frac{d \lambda + n L^2}{d \lambda} \biggr)}\]

Proof

Jensen’s inequality shows that

\[\hat{R}_n = \sum_{t=1}^n \bigl< A_t^\star - A_t, \theta \bigr> \coloneqq \sum_{t=1}^n r_t \leq \sqrt{n \sum_{t=1}^n r_t^2 }\]

where \(A_t^\star \dot{=} \argmax_{a \in \mathcal{A}_t} \bigl< a, \theta_\star \bigr>\) is the optimal action.

Let \(\tilde{\theta}_t\) be the vector that realizes the maximum over the ellipsoid:

\(\theta_t \in \mathcal{C}_t\) s.t. \(\bigl< A_t, \tilde{\theta}_t \bigr> = U_t(A_t)\)

From the definition of LinUCB,

\[\bigl< A_t^\star, \theta_\star \bigr> \leq U_t(A_t^\star) \leq U_t(A_t) = \bigl< A_t, \tilde{\theta}_t \bigr>\]

Then, (by Cauchy-Schwartz with VT-norm)

\[r_t \leq \bigl< A_t, \tilde{\theta}_t - \theta_\star \bigr> \leq ||A_t||_{V_{t-1}^{-1}} ||\tilde{\theta}_t - \theta_\star||_{V_{t-1}} \leq 2 ||A_t||_{V_{t-1}^{-1}} \sqrt{\beta_t}\]

So now we know the bound of \(r_t\) and can use it in Jensen’s inequality.

Elliptical Potential Lemma

So we now have a new upper bound,

\[\hat{R}_n = \sum_{i=1}^n r_t \leq \sqrt{n \sum_{t=1}^n r_t^2} \leq 2 \sqrt{n \beta_n \sum_{t=1}^n \bigl(1 \wedge ||A_t||^2_{V_{t-1}^{-1}} \bigr) }\]

where \(\bigl(1 \wedge ||A_t||^2_{V_{t-1}^{-1}} \bigr)\) is the norm squared of your actions.

Lemma (Abbasi-Yadkori et al. (2001))

Let \(x_1, ..., x_n \in \mathcal{R}^d\), \(V_t = V_0 + \sum_{s=1}^t x_s x_s^\intercal\), \(t \in [n]\) and \(L \geq \max_t ||x_t||_2\). Then,

\[\sum_{t=1}^n \bigl(1 \wedge ||x_t||^2_{V_{t-1}^{-1}} \bigr) \leq 2 \log \bigl(\frac{\det V_n}{\det V_0} \bigr) \leq d \log \bigl(\frac{\hbox{trace}(V_0) + nL^2}{d \det^{1/d}(V_0)} \bigr)\]

See Chapter 20 of Bandit Algorithms located here: https://tor-lattimore.com/downloads/book/book.pdf

Summary of Theorem (LinUCB Regret)

Let the conditions listed above hold. Then with \(1 - \delta\) the regret of LinUCB satisfies

\[\hat{R}_n \leq \sqrt{8dn\beta_n \log \biggl(\frac{d \lambda + n L^2}{d \lambda} \biggr)}\]

Linear bandits are an elegant model of the exploration-exploitation dilemma when actions are correlated. The main ingredients of the regret analysis are

	bounding the instantaneous regret using the definition of optimism

	a maximal concentration inequality holding for a randomized, sequential design

	the elliptical potential lemma

Real-World Setting: Delayed Feedback

If you have a delay, the learner is going to stop waiting. For instance, after \(m\) timestamps, it will start deleting data (inside the delay buffer).

Modified settings: at round \(t \geq 1\),

	receive contextualized action set \(\mathcal{A}_t = \{ a_1, ..., a_k \}\) and choose action \(A_t \in \mathcal{A}_t\),

	two random variables are generated but not observed: \(X_t \sim \mathcal{B} (\theta^\intercal A_t)\) and \(D_t \sim \mathcal{D}(\tau)\)

	at \(t + D_t\) the reward \(X_t\) of action \(A_t\) is disclosed …

	…unless \(D_t > m\): if the delay is too long, the reward is discarded.

New parameter: \(0 < m < T\) is the cut-off time of the system. If the delay is longer, the reward is never received. The delay distribution \(\mathcal{D}(\tau)\) characterizes the proportion of converting actions \(\tau_m = p(D_t \leq m)\). So this denotes the amount of data which is sent back to the agent.

We now have covariance metric \(V_t\) and slightly changed \(b_t\) vector which is the sum of the actions weighted by \(X_t\) times an indicator that it was part of those data actually in delay.

\[V_t = \sum_{s=1}^{t-1} A_s A_s^\intercal\]

\[\tilde{b}_t = \sum_{s=1}^{t-1} A_s X_s \mathcal{1} \bigl\{ D_s \leq m \bigr\}\]

where \(\tilde{b}_t\) contains additional non-identically distributed samples:

\[\tilde{b}_t = \sum_{s=1}^{t-m} A_s X_s \mathcal{1} \bigl\{ D_s \leq m \bigr\} + \sum_{s=t-m+1}^{t-1} A_s X_s \mathcal{1} \bigl\{ D_s \leq t-s \bigr\}\]

It is split into two parts: 1) old actions made a long time ago, 2) actions made in last delay portion.

This establishes a new estimator

\[\hat{\theta}_t^b = V_t^{-1} \tilde{b}_t\]

a “conditionally biased” least squares estimator which includes every recieved feedback. It is biased because the last set of observations are still awaiting reward somewhere in the buffer – these are not all iid because the probabiliyt of the delay being smaller than t-s is not the same as for all the actions. This hurts the estimator.

Baseline: use previous estimator but discord last \(m\) steps

\[\hat{\theta}_t^{disc} = V_{t-m}^{-1} b_{t-m}\]

with \(E[\hat{\theta}_t^{disc} | \mathcal{F}_t] \approx \tau_m \theta\)

We remark that

\[\begin{split}\begin{align*}
\hat{\theta}_t^b &= \hat{\theta}_t^b - \hat{\theta}_{t+m}^{disc} + \hat{\theta}_{t+m}^{disc} - \tau_m \theta\\
\end{align*}\end{split}\]

where \(\hat{\theta}_t^b - \hat{\theta}_{t+m}^{disc}\) contians the finite biase and \(\hat{\theta}_{t+m}^{disc} - \tau_m \theta\) is the same as before.

For the new \(\mathcal{C}_t\), we have new optimistic indices

\[A_t = \argmax_{a \in \mathcal{A}} \max_{\theta \in \mathcal{C}_t} \bigl< a, \theta \bigr>\]

But now, the solution has an extra (vanishing) bias term

\[A_t = \argmax_a \bigl< a, \hat{\theta}_t \bigr> + \sqrt{\beta_t} ||a||_{V_{t-1}^{-1}} + m ||a||_{V_{t-1}^{-2}}\]

D-LinUCB : Easy, straightforward, harmless modification of LinUCB, with regret guarantees in the delayed feedback setting

Regret bound (Theorem: D-LinUCFB Regret)

Under the same conditions as before, with \(V_0 = \lambda I\), with probability \(1 - \delta\) the regret of D-LinUCB satisfies

\[\hat{R}_n \leq \tau_m^{-1} \sqrt{8 d n \beta_n \log \biggl(\frac{\hbox{trace}(V_0) + nL^2}{d \det^{1/d}(V_0)} \biggr)} + \frac{dm}{(\lambda-1)\tau_m^{-1}} \log \bigl(1 + \frac{n}{d(\lambda-1)} \bigr)\]

So, we have an extra term. Note: There is a dependency on \(\tau_m\) here.

Conclusion

	Linear bandits are a powerful and well-understood way of solving the exploration-exploitation trade-off in a metric space

	The techniques have been extended to generalized linear models by Filippi et al

	and to kernel regression Valko et al

	Yet, including constraints and external sources of noise in real-world applications is challenging

	Sometimes when make action, it modifies environment and then following this environment change, it gets reward that credits to first action. In general RL setting, you take actions but don’t get reward immediately. You change position in space and rewards come later (in delayed way). In this case, we have to go out of the bandit assumption and open markov decision processes box (e.g. UCRL abd KL-UCRL Auer et al., Filippi et al.)

 Neural Network Gaussian Process (NNGP)

Neural Network Gaussian Process (NNGP)

Summary

Here, I will prove the NNGP. The proof is by induction. As we go through the layers of the NN, the gaussian structure property is preserved from layer to layer and the kernel updates.

\(f^{old}\) is a GP \(\Rightarrow\) \(f^{new}\) is a GP.

Definition

A “gaussian process” is a random function \(f(x)\) and any finite sample of points x creates a gaussian vector. So a guassian process is a generalization for a gaussian vector to an infinite number of points.

\[f(x) \sim \mathcal{GP} \bigl(\underbrace{m(x)}_{\text{mean}}, \underbrace{\sum (x, x^\prime)}_{\text{covariance}} \bigr) \in \mathbb{R}\]

For any finite set of test points \(x^{(1)}, \dots, x^{(n_{\text{test}})}\). Then the joint distribution of the vector \(f(x)\) is a gaussian vector with mean \(m(x^{(i)})\) with covariance structure \(\sum \bigl(x^{(i)}, x^{(j)} \bigr)_{ij=1}^{n_{\text{test}}}\)

\[\begin{split}\begin{bmatrix}
f(x^{(1)})\\
\vdots\\
f(x^{(n_{\text{test}})})
\end{bmatrix} \sim \mathcal{GaussianVector} \Biggl(
\begin{bmatrix}
m(x^{(i)})\\
\vdots\\
m(x^{(n_{\text{test}})})\\
\end{bmatrix},
\biggl[\sum \bigl(x^{(i)}, x^{(j)} \bigr)_{ij=1}^{n_{\text{test}}} \biggr]
\Biggr)\end{split}\]

So a gaussian process is just something where any finite dimensional subset of it is a guassian vector.

The main result is that in a neural network as you go from one layer to another layer, if one layer is a gaussian process then the next layer is also a gaussian process, and by propagating that through the network, you result in a NNGP. Note: it will mandate that the widths approach infinity.

Proposition

Note: An old function is assumed to be a gaussian process and the new function is our new layer update.

If \(f^{old} : \mathbb{R}^{n_{in}} \xrightarrow{} \mathbb{R}^{n_{old}}\) where every component \(f_i^{old} \sim \mathcal{GP}(0, \sum^{old} (x, x^\prime))\) and \(f_i^{old}, f_j^{old}\) are independent

Then \(f^{new} : \mathbb{R}^{n_{in}} \xrightarrow{} \mathbb{R}^{n_{new}}\) is defined as

\[f^{new}(x) = \frac{\sigma_W}{\sqrt{n_{old}}} \underbrace{W}_{n_{new} \times n_{old}} \underbrace{\phi(f^{old}(x))}_{n_{hid} \times 1} + \sigma_b \underbrace{b}_{n_{old} \times 1}\]

Note \(f^{new}\) is also a gaussian process and in the limit \(n_{old} \xrightarrow{} \infty\), we can write its kernel:

\[f_i^{new} \sim \mathcal{GP} (0, \sum^{new} (x, x^\prime))\]

with covariance structure \(\sum^{new} (x, x^\prime) = \sigma_W^2 \mathbf{E} \bigl[\phi \bigl(f^{old}_1 (x) \bigr)^T \phi \bigl(f_1^{old}(x^\prime) \bigr) \bigr] + \sigma_b^2\), or more simply \(\sum^{new} (x, x^\prime) = \sigma_W^2 \mathbf{E} \bigl[\phi \bigl(Z \bigr)^T \phi \bigl(Z^\prime \bigr) \bigr] + \sigma_b^2\) where

\[\begin{split}z,z^\prime \sim \mathcal{Gaussian} \biggl(0, \begin{bmatrix}
\sum^{old} (x, x) & \sum^{old} (x, x^\prime)\\
\sum^{old} (x^\prime, x) & \sum^{old} (x^\prime, x^\prime)\\
\end{bmatrix} \biggr)\end{split}\]

And \(f_i, f_j\) are independent for \(i \neq j\).

Short proposition

\(f^{old}\) is a GP \(\Rightarrow\) \(f^{new}\) is a GP.

Proof

\(f_i^{new}\) is exactly a random feature regression model with features given by

\[\phi(x) = \Bigl[\phi \bigl(f^{old}(x) \bigr) \Bigr]_i\]

\(\Rightarrow f_i^{new}\) is a GP with kernel:

\[" K(x, x^\prime) " = \frac{\sigma w^2}{n_{old}} \sum_{i=1}^{n_{\text{old}}} \phi \bigl(f^{old}(x) \bigr)_i \phi \bigl(f^{old}(x^\prime) \bigr)_i + \sigma_b^2\]

\[\xrightarrow{} \sigma_W^2 \mathbb{E} \bigl[\phi \bigl(f^{old}(x) \bigr)_1 , \phi \bigl(f^{old}(x) \bigr)_1 \bigr] + \sigma_b^2\]

and \(f_i^{new}\) and \(f_j^{new}\) are independent.

Acknowledgements

Summarized from https://bpb-ca-c1.wpmucdn.com/sites.uoguelph.ca/dist/8/175/files/2021/02/Notes_on_feature_regression_and_wide_NNs.pdf

 Helpful Resources

Helpful Resources

Good Blogs: https://colah.github.io/

Graph Theory: http://olizardo.bol.ucla.edu/classes/soc-111/textbook/_book/1-intro.html#intro

Derivatives of Lin. Algebra: http://michael.orlitzky.com/articles/the_derivative_of_a_quadratic_form.xhtml

Use non-linear model at end of NN : https://www.reddit.com/r/MachineLearning/comments/qex0o7/d_mlps_are_actually_nonlinear_linear/

Computer science at UCF: https://www.cs.ucf.edu/~kienhua/classes/

Statistics with proofs and python: https://xavierbourretsicotte.github.io/#

Statistics notes written out on Twitter: https://twitter.com/mervenoyann/status/1386752998131605510

Data science project (including XGBoost) example implementation: https://github.com/alexeygrigorev/mlbookcamp-code/blob/master/course-zoomcamp/06-trees/notebook.ipynb

Data science project template: https://drivendata.github.io/cookiecutter-data-science/#cookiecutter-data-science

Deep learning descriptions: https://arthurdouillard.com/deepcourse/

DL Timeseries Reserve: https://github.com/Alro10/deep-learning-time-series

Cool Papers

Uncertainty estimation NN: https://arxiv.org/pdf/2003.02037.pdf

Decomposing sensitivity components for calibration: https://arxiv.org/pdf/2110.14577.pdf

HMM -> ODE: http://www.stat.columbia.edu/~liam/teaching/neurostat-fall20/papers/hmm/minka-lds-techreport.pdf

Data + ODE: https://arxiv.org/pdf/2103.10153.pdf

 Index

Index

 Basic Neural Network

Basic Neural Network

Structure of a neuron

Input data is transformed by weights and biases into “\(z\)”. An activation is applied to the trnasformed input into “\(a\)”. An activation function is applied to the transformed input, introducing non-linearity in the model. The activation function allows the model to build complex decision boundaries that can work with non-linear separable data. There are 3 most commonly known activation functions

	Sigmoid

Sigmoid is is a widely used activation function that helps in cpaturing non-linear relationships

\[\sigma (z) = \frac{1}{1 + e^{-z}}\]

For any value of \(z\), \(\sigma (z)\) will always return binary \([0, 1]\) output. Because of this, it is widely used in probability based questions.

	Tangent hyperbolic (tanh)

It is more or less the sigmoid function but ‘tanh’ ranges from \([-1, 1]\) which makes it suitable for classification problems

\[tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}\]

	Rectified linear unit (relu)

It is most used function in deep learning. It is less complex than others. \(Relu(z)\) returns either \(0\) or \(z\)

\[\begin{split}Relu(z) = \max(0, z) = \begin{cases}
0 & \hbox{if}\quad z < 0\\
z & o.w.
\end{cases}\end{split}\]

NN Architecture

Suppose we have some inputs \(X\) and known outputs \(y\). The aim of the game is to find a way of estimating \(y\) based on \(X\). In a way, a neural network is like any other regression or classification model. Neural nets have layers.

	The output layer is our estimate of the probability of belonging to each class (in classification)

	The input layer comprises the covariates and an intercept

	In the middle, there is a hidden layer.

The process of training neural net is broken into the following steps

Step 1: Forward propagation

Training data is passed in a single direction through the netework from input layer through the hidden layers and out through the output layer

Step 2: Backward propagation

After the output is computed through the forward pass, we measure how the prediction is, using pre-defined loss function. The loss function outputs an error value that tells us how well the network did. The error is then sent backwards through the netowrk and the gradients are computed.

Step 3: Update weights

The computed gradients tell us how much each weight affects the error and uses the gradients to adjust the weights slightly towards the target values.

Demonstration

For the demonstration purpose, there are 2 input features \(X_1\) and \(X_2\) that are fed into the input layer. A hidden layer has 3 neurons. Each neuron has assigned the weight parameter (\(w_{11}, w_{12}, w_{13}, w_{21}, w_{22}, w_{23}, w_{31}, w_{41}, w_{51}\)) as shown below

[6]:

from utils import disp
disp('NN_basic_architecture.drawio.png', factor=1.1)

[image: ../_images/nblinks_Basic_neural_networks_1_0.png]

Generally, these parameters are initialized randomly. This is an example of a 2-3-1 neural network. The \(\underset{\sim}{b_1}\) and \(\underset{\sim}{b_2}\) are the bias parameters for the input layer and hidden layer respectively.

There are 5 steps of NN:

	Initialize the weight and bias parameters

	Forward propagation

	Compute the loss

	Backpropagation

	Update the weight and bias parameters

Forward Propagation

In forward propagation, the input data are fed to the network in the forward direction. Each hidden layer gets the data, perfomrs calculations, and passes the result to the next layer. The output layer calculates the output of the model. Mathematically,

\[\begin{split}\begin{bmatrix}
Z_{11}\\ Z_{12}\\ Z_{13}\\
\end{bmatrix} = \begin{bmatrix}
w_{11} & w_{21}\\
w_{12} & w_{22}\\
w_{13} & w_{23}\\
\end{bmatrix} \begin{bmatrix}
x_1\\ x_2\\
\end{bmatrix} + \begin{bmatrix}
b_1\\b_1\\b_1\\
\end{bmatrix}\end{split}\]

\[\begin{split}\begin{bmatrix}
a_{11}\\a_{12}\\a_{13}\\
\end{bmatrix} = \sigma \begin{bmatrix}
Z_{11}\\Z_{12}\\Z_{13}\\
\end{bmatrix}\end{split}\]

\[\underset{\sim}{A}^{[1]} = \sigma \Bigl[\underset{\sim}{Z^{[1]}} \Bigr]\]

\[\begin{split}\begin{bmatrix}
z_{21}\\
\end{bmatrix} = \begin{bmatrix}
w_{31} & w_{41} & w_{51}\\
\end{bmatrix} \begin{bmatrix}
a_{11} \\ a_{12} \\ a_{13}\\
\end{bmatrix} + \begin{bmatrix} b_2 \end{bmatrix}\end{split}\]

\[\underset{\sim}{Z}^{[2]} = w^{[2]} A^{[1]} + b^{[2]}\]

\[a_{21} = \sigma (z_{21})\]

\[[a_{21}] = \sigma [z_{21}]\]

Compute the loss (error)

Loss function: $ J = -\frac{1}{m} \sum_{i=1}^m L \bigl`(a^{[2]}, y^{(1)} :nbsphinx-math:bigr`)$ where \(L(a^{[2]}, y) = -y \log a^{[2]} - (1 - y) \log (1 - a^{[2]})\)

Back propagation

Back propagation is the process of propagating the error (loss) back to the neural net and update the weights of each neuron subsequently by adjusting the weight and bias parameters. We need to choose weights that make our model “better” by some criterion. Coloqually, we train our neural net by minimizing the cross-entropy loss. Manematically, we fit it using maximum likelihood as follows

[4]:

disp('nn_basic_propagation.drawio.png', factor=1.)

[image: ../_images/nblinks_Basic_neural_networks_3_0.png]

The left pointing lines represent the backpropagation of partial derivatives of the loss function wrt the variables in the network. We compute these using the chain rule. First, let’s find the derivative of the sigmoid function \(\sigma(x) = (1 + e^{-x})^{-1}\):

\[\sigma^\prime (x) = \Bigl(1 + e^{-x}\Bigr)^{-2} e^{-x} = \Bigl(\frac{1}{1 + e^{-x}} \Bigr) \Bigl(\frac{1 + e^{-x} - 1}{1 + e^{-x}} \Bigr) = \Bigl(\frac{1}{1 + e^{-x}} \Bigr) \Bigl(1 - \frac{1}{1+e^{-x}} \Bigr) = \sigma(x) \bigl(1 - \sigma(x) \bigr)\]

	
\[\begin{split} \begin{align*}
d a^{[2]} &= \frac{\partial L}{\partial a^{[2]}}\\
&= \frac{\partial}{\partial a^{[2]}} \Bigl(-y \log a^{[2]} - (1-y) \log (1 - a^{[2]}) \Bigr)\\
&= \frac{-y}{a^{[2]}} + \frac{1 - y}{1 - a^{[2]}}\\
\end{align*}\end{split}\]

Note that \(a^{[2]} = \hat{y}\).

	
\[\begin{split}\begin{align*}
dZ^{[2]} &= \frac{\partial L}{\partial Z^{[2]}}\\
&= \frac{\partial L}{\partial a^{[2]}} \times \frac{\partial a^{[2]}}{\partial Z^{[2]}}\\
& \hbox{\textcolor{green}{(chain rule)}}\\
&= \Bigl(\frac{-y}{a^{[2]}} + \frac{1-y}{1 - a^{[2]}} \Bigr) \bigl(\frac{\partial \sigma (z^{[2]})}{\partial Z^{[2]}} \bigr)\\
&= \Bigl(\frac{-y(1 - a^{[2]}) + (1 - y) a^{[2]}}{a^{[2]} (1 - a^{[2]})} \Bigr) \bigl(a^{[2]} (1 - a^{[2]}) \bigr)\\
&= -y + y a^{[2]} + a^{[2]} - y^{[2]}\\
&= a^{[2]} - y\\
\end{align*}\end{split}\]

	
\[\begin{split}\begin{align*}
d w^{[2]} &= \frac{\partial L}{\partial w^{[2]}}\\
&= \frac{\partial L}{\partial Z^{[2]}} \times \frac{\partial Z^{[2]}}{\partial w^{[2]}}\\
&= d Z^{[2]} \Bigl(\frac{\partial}{\partial w^{[2]}} \bigl(w^{[2]} a^{[1]} + b^{[2]} \bigr) \Bigr)\\
&= d Z^{[2]} a^{[1]}\\
\end{align*}\end{split}\]

\[\begin{split}\begin{align*}
db^{[2]} &= \frac{\partial L}{\partial b^{[2]}}\\
&= \frac{\partial L}{\partial Z^{[2]}} \times \frac{\partial Z^{[2]}}{\partial b^{[2]}}\\
&= \partial Z^{[2]} \Bigl(\frac{\partial}{\partial b^{[2]}} \bigl(w^{[2]} a^{[1]} + b^{[2]} \bigr) \Bigr)\\
&= \partial Z^{[2]}
\end{align*}\end{split}\]

iv.

\[\begin{split}\begin{align*}
\partial a^{[1]} &= \frac{\partial L}{\partial a^{[1]}}\\
&= \frac{\partial L}{\partial Z^{[2]}} \times \frac{\partial Z^{[2]}}{\partial a^{[1]}}\\
&= \partial Z^{[2]} \times w^{[2]}\\
\end{align*}\end{split}\]

	
\[\begin{split}\begin{align*}
\partial Z^{[1]} &= \frac{\partial L}{\partial Z^{[1]}}\\
&= \frac{\partial L}{\partial a^{[1]}} \times \frac{\partial a^{[1]}}{\partial z^{[1]}}\\
&= \Bigl(\partial Z^{[2]} \times w^{[2]} \Bigr) \times \Bigl(\frac{\partial \sigma (Z^{[1]})}{\partial Z^{[1]}} \Bigr)\\
&= \partial Z^{[2]} \times w^{[2]} \times \sigma^\prime (Z^{[1]})\\
\end{align*}\end{split}\]

	
\[\begin{split}\begin{align*}
\partial w^{[1]} &= \frac{\partial L}{\partial w^{[1]}}\\
&= \frac{\partial L}{\partial Z^{[1]}} \times \frac{\partial Z^{[1]}}{\partial W^{[1]}}\\
&= \partial Z^{[1]} \times \Bigl(\frac{\partial}{\partial w^{[1]}} \bigl(w^{[1]} x + b^{[1]} \bigr) \Bigr)\\
&= \partial Z^{[1]} \times x
\end{align*}\end{split}\]

\[\begin{split}\begin{align*}
\partial b^{[1]} &= \frac{\partial L}{\partial b^{[1]}}\\
&= \frac{\partial L}{\partial Z^{[1]}} \times \frac{\partial Z^{[1]}}{\partial b^{[1]}}\\
&= \partial Z^{[1]} \times \Bigl(\frac{\partial}{\partial b^{[1]}} \bigl(w^{[1]} x + b^{[1]} \bigr) \Bigr)\\
&= \partial Z^{[1]}
\end{align*}\end{split}\]

Weight updating

The weight and bias parameters are updated as follows (for example):

\[w_{t+1}^{[1]} = w_t^{[1]} - \alpha \frac{\partial L}{\partial w_t^{[1]}}\]

\[b_{t+1}^{[1]} = b_t^{[1]} - \alpha \frac{\partial L}{\partial b_t^{[1]}}\]

\[w_{t+1}^{[2]} = w_t^{[2]} - \alpha \frac{\partial L}{\partial w_t^{[2]}}\]

\[b_{t+1}^{[2]} = b_t^{[2]} - \alpha \frac{\partial L}{\partial b_t^{[2]}}\]

\(\alpha \in [0,1]\) is the learning rate that represents the step size. It controls how much to updat ethe parameter.

 Gradient Descent

Gradient Descent

Suppose we want to solve \(\min F(w)\) or \(\min_w E_{in} (w) \quad (F(w) = \frac{1}{n} \sum_{i=1}^n f_i (w))\). \(E_{in}(w)\) represents the in-sample loss (or training loss). In general \(E_{in}(w) = \frac{1}{N} \sum_{i=1}^N f_i(w)\). In machine learning, we want to find the hypothesis that minimizes $E_{in}(w).

Convex functions:

\(\nabla F(w^\star) = 0 \Longleftrightarrow w^\star\) is a global minimum. A function is convex if \(\nabla^2 F[w]\) is positive definite. Ex. linear regression, logistic regression, …

Non-convex functions:

\(\nabla F(w^\star) = 0 \Longleftrightarrow w^\star\) is global minimum, local minimum, OR saddle point.

Most algorithms only converge to gradient = 0

For example, Neural Networks

[1]:

from utils import disp
disp('nn_gradient_basic.drawio.png')

[image: ../_images/nblinks_Gradient_descent_1_0.png]

The gradient descent update rule can be written in terms of the gradient. The original GD update is the same as the one of the steepest descent.

\[w^{(t+1)} = w^{(t)} - \alpha^{(t)} \nabla F (w^{(t)})\]

where \(\alpha^{(t)}\) is called the step size.

Step size: several methods are available to choose the step size.

i). Fixed step size: \(\alpha^{(t)} = \alpha, \forall t\)

ii). Exact line search: \(\alpha^{(t)} = arg\min_{\alpha} F(w^{(t)} + \alpha d^{(t)})\) where \(d^{(t)} = - \nabla F(w^{(t)})\).

iii). Inexact line search - (See Amijo/Wolfe conditions)

In machine learning, we use option (i). So, the GD update rule becomes \(w^{t+1} = w^{(t)} - \alpha F(w^{(t)})\) where \(\alpha > 0\) is the step size (or learning rate). In general, \(\alpha\) is one of the most important hyperparameter of a learning algorithm. It’s very important to tune it. \(\alpha\) too large can cause instability, causing divergence. \(\alpha\) too small can slow progress, making it too slow to converge. Most importantly, one tries a bunch of values
and pick the one which works the best.

Algorithm

	Initialize \(w \xrightarrow{} w^{(0)}\)

	For \(t=1, 2, ...\) do

	Compute \(\nabla F(w^{(t)})\)

	Update \(w^{(t+1)} = w^{(t)} - \alpha \nabla F (w^{(t)})\)

	return \(w^{(t)}\)

Convergence

Let \(X^\star\) be the global minimizer. Assume the following:

	\(f\) is twice differentiable so that \(\nabla^2 f\) exists

	\(0 \leq \lambda \min I \leq \nabla^2 f(x) \leq \lambda \max I\) for all \(X \in \mathcal{R}^n\).

	Run GD with exact line search

Then, \(f(X^{(t)}) \xrightarrow{} f(X^\star)\) as \(t \xrightarrow{} \infty\)

Proof is in Nocedal-Wright, Ch.3, Thm 3.3.

Advice on Gradient Descent

GD is useful because 1) it is simple to implement, and 2) low computational cost per iteration (no matrix inversion). It requires only first order derivative (i.e. no hessian).

Most machine learning has built-in (stochastic) gradient descent. When building one, be aware of following:

	Convex non-differentiable problem (L1-norm)

	Non-convex problem, e.g. ReLU in deep network

	Trap by local minima

	Inappropriate step size

Example: Consider the problem of minimizing \(f(x,y) = 4x^2 - 4xy + 2y^2\) using the gradient descent method.

Solution: We knew that the solution is \((0,0)\). First, let’s compute the gradient

\[\begin{split}\nabla f(\underset{\sim}{X}) - \nabla f(X, y) = \begin{pmatrix}
\frac{df}{dx}\\
\frac{df}{dy}\\
\end{pmatrix} = \begin{pmatrix}
8x-4y\\
-4x+4y\\
\end{pmatrix}\end{split}\]

Starting from initial point,

\[\underset{\sim}{X}^{(0)} = (X^{(0)}, y^{(0)}) = (2,3)\]

We want to find the next point \(\underset{\sim}{X}^{(1)} = \underset{\sim}{X}^{(0)} - \alpha \nabla f(\underset{\sim}{X}^{(0)})\). Assuming that \(\alpha = \frac{1}{2}\), then

\[\begin{split}\underset{\sim}{X}^{(1)} = (X^{(1)}, y^{(1)}) = \begin{pmatrix}2\\3\\\end{pmatrix} - \frac{1}{2} \begin{pmatrix}4\\4\\\end{pmatrix} = \begin{pmatrix}0\\1\\\end{pmatrix}\end{split}\]

Check for convergence: If not convergence, continue to \(\underset{\sim}{X}^{(2)}\) and repeat the process until convergence.

Stochastic Gradient Descent (SGD)

In machine learning, our cost loss function general consists of the average of costs or losses for individual training samples. This means that most loss functions in ML problems are separable

\[J(\underset{\sim}{\theta}) = \frac{1}{N} \sum_{n=1}^N \mathcal{L} (g_\theta (X^n), y^{(n)}) = \frac{1}{N} \sum_{n=1}^N J_n (\underset{\sim}{\theta})\]

Example:

	Square loss

\[J(\underset{\sim}{\theta}) = \frac{1}{N} \sum_{n=1}^N (g_\theta (X^n) - y^{n})^2\]

	Cross-entropy loss

\[J(\underset{\sim}{\theta}) = - \sum_{n=1}^N \Bigl\{ y^n \log g_\theta (X^n) + (1 - y^n) \log (1 - g_\theta (X^n)) \Bigr\}\]

	Logistic loss

\[J(\underset{\sim}{\theta}) = \sum_{n=1}^N \log (1 + \exp (-y^{n \theta^T X^n}))\]

Recall for GD, \(\underset{\sim}{\theta}^{(t+1)} = \theta^{(t)} - \alpha \nabla J(\theta^{(t)})\). The main computation is \(\nabla J(\theta^{(t)})\). By linearity of derivatives, the gradient is the average of all the gradients for individual examples:

\[\nabla J(\theta) = \frac{1}{N} \sum_{n=1}^N \nabla J_n (\theta) \quad \hbox{is the full gradient of the loss}\]

This means that if we use this formula directly, we must visit every training example to compute the gradient. This is known as batch training since we are treating the entire training set as a batch But this can be very time-consuming and it is also unnecessary. We can get a stochatic estimate of the gradient from a single training sample. Instead of computing the sum of all gradients, SGD selects an observation uniformly at random, say \(n\), and uses \(\nabla J_n (\theta)\) as an
estimator for \(\nabla J(\theta) \quad (\nabla J(\theta) = \frac{1}{N} \sum_{n=1}^N \nabla J_n (\theta))\).

\[\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla J_n (\theta^{(t)})\]

Algorithm

	Initialize \(\theta \xrightarrow{} \theta^{(0)} = 0\) or randomly

	For \(t = 1,2,3,...\),

	Sample 1 observation \(n\) uniformly at random

	Update \(\theta^{(t+1)} = \theta^{(t)} - \alpha \nabla J_n (\theta^{(t)})\)

In practice, we don’t compute the gradient on a single example, but rather compute an average overa a batch of \(B\) training examples. Recall the full graident of hte loss

\[\nabla J(\theta) = \frac{1}{N} \sum_{n=1}^N \nabla J_n (\theta)\]

For SGD (mini-batch), \(\nabla J(\theta) \approx \frac{1}{B} \sum_{n\in B} \nabla J_n (\theta)\) where \(B \leq \{ 1, 2, ..., N \}\) is a random subset and \(|B|\) is the batch size.

Mini-batch SGD Algorithm

	Initialize \(\theta \xrightarrow{} \theta^{(0)} = 0\) or randomly

	For \(t=1,2,3,...\),

	Draw a random subset \(B \leq \{ 1, 2, ..., N \}\)

	Update \(\theta^{(t+1)} = \theta^{(t)} - \alpha \frac{1}{|B|} \sum_{n \in B} \nabla J_n (\theta^{(t)})\)

The approximate gradient is unbiased:

\[E[\frac{1}{|B|} \sum_{n\in B} \nabla J_n (\theta)] = \nabla J(\theta)\]

If all operations were equally expensive, one would always prefer to use \(B=1\). We don’t want to make \(B\) too large, because then it takes too long to compute the gradients. In the extreme case where \(B=N\), we get back the batch gradient descent.

Interpreting SGD

Recall the SGD step is unbiased. Unbiased gradient implies that each update is gradient + zero-mean noise.

Step size: SGD with constant size does not converge. If \(\theta^\star\) is a minimizer, then \(J(\theta^\star) = \frac{1}{N} \sum_{n=1}^N J_n (\theta^\star) = 0\).

But, \(\frac{1}{|B|} \sum_{n \in B} J_n (\theta^\star) \neq 0\), since \(B\) is a subset. Typical strategy: start with a large step size and gradually decrease \(\alpha^t \xrightarrow{} 0\) (e.g. \(\alpha^t = t^{-a}\)) for some constant \(a\).

Summary

Compared to GD in convex problems, SGD offers as trade-off between accuracy and efficiency. It involves more iterations, less gradient evaluation per iteration.

Recent studies of SGD for non-convex problems found that:

	SGD for training deep neural networks works

	SGD finds solution faster

	SGD finds a better local minima

	Noise matters

Exercise: Find the gradient for this loss function, \(\nabla J(\theta)\) using following information

\[h_\theta (x) = \theta^T X\]

\[\underset{\sim}{\theta} = (\theta_0, \theta_1, ..., \theta_n) \qquad \underset{\sim}{X} = (1, X_1, ..., X_n)\]

\[J(\theta) = \frac{1}{2} \sum_{i=1}^n (h_\theta (X^{(i)} - y^{(i)}))^2 \xrightarrow{} SSE\]

 Least-Squares SVM

Least-Squares SVM

SVM Review

Introduction

	SVM is an approach to classification

	SVMs are based on 3 big ideas

	maximizing the margin

	duality

	kernels

Kernels allow a set of features to be mapped into a higher dimension and therefore more expansive feature space without incurring the full computational cost one might expect

Maximizing the margin

In binary classification problems, we consider an input space \(X\) which is a subset of \(\mathcal{R}^n\) with \(n \geq 1\). The output space is the set \({-1,1}\), representing our two-class system. Given a training set \(S\) of \(m\) examples, \(S=\{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}\), which are drawn from \(X\) iid by an unknown distribution \(D\). We want to select a hypothesis \(h \in H\) that best predicts the classification of other points
which are also drawn by \(D\) from \(X\). One of the simplest classification rules are the class of linear classifiers or hyperplanes. A hyperplane \((w,b)\) separates a sample \(S\) if for every \((x,y) \in S\) we have

\[sign(w^T x + b) = y\]

The “margin” intuitively means the distance of the decision boundary to the closest points. We look for \((w,b)\) that maximizes the margin, which is defined as:

\[\min \frac{1}{2} ||w||^2\]

\[\hbox{s.t.}\quad y_i(w^T x_i + b) \geq 1, \quad i=1,2,...,m\]

Non-linearly separable data

The above discussion assumed the existence of a linear classifier that can correctly classify all examples in a given training sample \(S\). But, what happens if the data is not fully separable? We relax the constraints \(y_i (w^T x_i + b) \geq 1, \quad \forall_i\) slightly to allow for misclassified points. This is done by introducing slack variables \(\xi_i, i=1, ..., m\). Our objective function becomes:

\[\min \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i\]

\[\hbox{s.t.}\quad y_i (w^T x_i + b) - 1 + \xi_i \geq 0 \quad \forall_i = 1, ..., m \quad \hbox{and} \quad \xi_i \geq 0, i=1, 2, ..., m\]

where the parameter \(C\) controls the trade-off between the slack variable penalty and the sign of the margin.

Non-linear SVM

We map \(X_i\) into a higher dimensional space where it will be linearly separable, using a map \(\phi\), we want to solve:

\[\min \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i\]

\[\hbox{s.t.}\quad y_i (w^T \phi(x_i) + b) - 1 + \xi_i \geq 0 \quad \forall_i = 1, ..., m \quad \hbox{and} \quad \xi_i \geq 0, \forall_i\]

The lagrangian is

\[L_p = \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i - \sum_{i=1}^m \alpha_i (y_i (w^T \phi(x_i) + b) - 1 \xi_i) - \sum_{i=1}^m \beta_i \xi_i\]

where \(\alpha_i \geq 0\) and \(\beta_i\) are the lagrange multipliers. After differentiation with primal variables,

\[\frac{\partial L_p}{\partial w} = 0 \quad \Rightarrow{} \quad w = \sum_{i=1}^m \alpha_i y_i \phi (x_i)\]

\[\frac{\partial L_p}{\partial b} = 0 \quad \Rightarrow{} \quad \sum_{i=1}^m \alpha_i y_i = 0\]

\[\frac{\partial L_p}{\partial \xi_i} = 0 \quad \Rightarrow{} \quad C = \alpha_i + \beta_i\]

Putting these results back into \(L_p\) yields

\[\max_{\alpha} \sum \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j \phi (x_i)^T \phi(x_i)\]

\[s.t. 0 \leq \alpha_i \leq C \quad \forall_i \quad \hbox{and} \quad \sum \alpha_i y_i = 0\]

The constraint \(0 \leq \alpha_i \leq C\) is called the “box constraint”.

Definition: A kernel function is defined as a function \(k\) s.t. \(k(x,z) = \phi(x)^T \phi(z)\) .

Using kernel function, the dual problem becomes:

\[\max_\alpha \sum \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j k(x_i, x_j)\]

\[\hbox{s.t.}\quad 0 \leq \alpha_i \leq C, \quad \forall_i \quad \hbox{and} \quad \sum \alpha_i y_i = 0\]

Necessary and sufficient conditions for \(k\) to be a valid kernel is to satisfy Mercer’s Theorem.

Since the objective function is convex and all the constraints are linear, this problem can be solved efficiently using standard quadratic programming software. After the dual problem is solved, the slackness conditions imply 3 scenarios for the training data points \(x_i\) and the lagrange multipliers \(\alpha_i\) associated with their classification constraints.

	\(\alpha_i = 0\) and \(\xi_i = 0 \quad \Rightarrow{} \quad\) the data point \(x_i\) has been correctly classified

	\(0 \leq \alpha_i \leq C\) and \(\xi_i = 0 \quad \Rightarrow{} \quad X_i\) is a support vector. *Note: that the SVs that classify \(0 \leq \alpha_i \leq C\) are the unbounded support vectors*

	\(\alpha_i = C\) and \(\xi_i \geq 0 \quad \Rightarrow{} \quad x_i\) is a support vector. *Note: that the SVs with \(\alpha_i = C\) are bounded support vectors, that is they lie inside the margin*

Least Squares SVM

Introduction

The standard SVM are solved using quadratic programming methods. However, these methods are often time-consuming and are difficult to implement adaptively. Research has been undertaken to use a quadratic error criterion instead of the L1-Norm used for SVM. Suykens et al. (1999) formulated a modified SVM, leat squares SVM (LS-SVM) based on using a quadratic error criterion with equality constraints.

LS-SVM formulation

Suppose a training set of \(m\) data points \(\{x_i, y_i\}_{i=1}^m\), where \(x_i \in \mathcal{R}^n\) is the \(i\)th input vector and \(y_i \in \{-1,1\}\).

We employ the idea to transform the input patterns into the reproducing kernel Hilbert space (RKHS) by a set of mapping function \(\phi(x)\). We define the predocing kernel in RKHS as \(k(x,z) = \phi(x)^T \phi(z)\). In the RKHS, the discriminant function takes the form \(f(x) = w^T \phi(x) + b\). \(w\) is the weight vector, \(b \in \mathcal{R}\) is the bias term. The discriminant function of LS-SVM is constructed by minimizing the following problem:

\[\min_{w,b,\xi} J(w,b,\xi) = \frac{1}{2} ||w||^2 + \frac{C}{2} \sum_{i=1}^m \xi_i^2\]

\[\hbox{s.t.} \quad y_i(w^T \phi(x_i) + b) = 1 - \xi_i, \quad i=1,...,m\]

\(C\) is the regularization parameter and determines the trade-off between the fitting error minimization and smoothness. \(\xi_i\) is the error.

This problem is easily solved by using the Lagrange multipliers. The Lagrangian is

\[L(w,b,\xi, \alpha) = \frac{1}{2} ||w||^2 + \frac{C}{2} \sum_i \xi_i^2 - \sum_{i=1}^m \alpha_i (y_i (w^T \phi(x_i) + b) - 1 + \xi_i)\]

The conditions for optimality are obtained as follows:

\[\frac{\partial L}{\partial w} = 0 \quad \Rightarrow{} \quad w = \sum_{i=1}^m \alpha_i y_i \phi(x_i)\]

\[\frac{\partial L}{\partial b} = 0 \quad \Rightarrow{} \quad \sum \alpha_i y_i = 0\]

\[\frac{\partial L}{\partial \xi_i} = 0 \quad \Rightarrow{} \quad \alpha_i = C \xi_i \quad \hbox{therefore α_i can be + or -}\]

\[\frac{\partial \alpha}{\partial \alpha} = 0 \quad \Rightarrow{} \quad y_i (w^T \phi(x_i) + b) - 1 + \xi_i = 0\]

The Lagrange multipliers, \(\alpha_i\), can be either + or - due to the dquality constraints. Elimination of \(w\) and \(\xi\) from the \(\frac{\partial L}{\partial \alpha} = 0\) term results in \(\xi_i = \frac{\alpha_i}{C}\). Substitute \(w\) from \(\frac{\partial L}{\partial w} = 0\) in \(\frac{\partial \alpha}{\partial \alpha} = 0\) gives

\[y_j [\sum_{i=1}^m \alpha_i y_i \phi(x_i)^T \phi(x_i) + b] - 1 + \frac{\alpha_j}{C} = 0 \Longleftrightarrow \sum_{i=1} \alpha_i y_i y_j \phi(x_i)^T \phi(x_j) + b y_j - 1 \frac{\alpha_j}{C} = 0\]

Because \(\alpha_i\) and \(\alpha_j\) are separate, this is a linear equation. Using this equation as well as \(\frac{\partial L}{\partial b}\), and the fact that the matrix form of \(\sum \alpha_i y_i \Leftrightarrow \underset{\sim}{y}^T \underset{\sim}{\alpha} = 0\), where \(\underset{\sim}{y} = (y_1, y_2, ..., y_m)^T\) and \(\underset{\sim}{\alpha} = (\alpha_i, \alpha_2, ..., \alpha_m)^T\), we get:

\[\sum_{i=1} \alpha_i y_i y_j \phi(x_i)^T \phi(x_j) + b y_j - 1 \frac{\alpha_j}{C} = 0 \Longleftrightarrow b \underset{\sim}{y} + (z^T z + \frac{1}{C} I) \underset{\sim}{\alpha} = \underset{\sim}{1}\]

where \(\underset{\sim}{z} = (z_1, z_2, ..., z_m)^T\) with \(z_i = y_i \phi (x_i)\). \(I\) is identity and \(\underset{\sim}{1} = (1, 1, ..., 1)^T\). We define \(\Omega = z^t z\) with \(\Omega_{ij} = y_i y_j k(x_i, x_j)\), then we get

\[\begin{split}\begin{bmatrix}
\underset{\sim}{0} & \underset{\sim}{y}^T \\
\underset{\sim}{y} & \Omega + \frac{1}{C} I \\
\end{bmatrix} \begin{bmatrix}
b\\
\underset{\sim}{b}\\
\end{bmatrix} = \begin{bmatrix}
0\\
\underset{\sim}{y}\\
\end{bmatrix}\end{split}\]

where we can apply \(Ax = b \Rightarrow x = A^{-1} b\)

The support values \(\alpha_k\) are proportional to the errors of the data. In general, the \(\alpha_k\) values are not zero. The model prediction is the same as SVM, given by the sign of \(y(x)\):

\[y(x) = \sum_{i=1}^m \alpha_i y_i k(x, x_i) + b\]

Example

\[\begin{split}\begin{matrix}
&x & y\\
&(-1,-1) & -1\\
\textcolor{green}{\hbox{sometimes these are}\quad \Rightarrow}&(-1,1) & 1 \\
\textcolor{green}{\hbox{the same}\quad \Rightarrow}&(-1,1) & 1\\
&(1,1) & -1\\
\end{matrix}\end{split}\]

Let \(f(x,z) = (1 + x^T z)^2\). Matrix \(\Omega\) is

\[\begin{split}\Omega = \begin{bmatrix}
9 & -1 & -1 & 1\\
-1 & 9 & 1 & -1\\
-1 & 1 & 9 & -1\\
1 & -1 & -1 & 9\\
\end{bmatrix}\end{split}\]

Suppose we set \(C=100\), we get that

\[\begin{split}\begin{bmatrix}
b\\
\underset{\sim}{\alpha}
\end{bmatrix} = \begin{bmatrix}
0 & \underset{\sim}{y}^T\\
\underset{\sim}{y} & \Omega + \frac{1}{C} I\\
\end{bmatrix}^{-1} \begin{bmatrix}
0\\
\underset{\sim}{1}\\
\end{bmatrix}\end{split}\]

Therefore, \(b=0, \quad \underset{\sim}{\alpha} = (0.1248, 0.1248, 0.1248, 0.1248)^T\).

Notes

For large values of \(m\), an iterative solution method for solving the system of a linear equation is needed. One method is based on the Hastenes-Stietel conjugate gradient for solving \(Ax = b\) with \(A \in \mathcal{R}^{m \times n}\), symmetric positive definite and \(B \in \mathcal{R}^n\).

 Regularization Methods

Regularization Methods

Ridge and lasso regression are 2 forms of regularization regression. These methods seek to alleviate the consequences of multicollinearity.

Ridge

Ridge regression (RR) is motivated by a constrained minimization problem, which can be formulated as

\[\min \sum_{i=1}^n (y_i - X_i^T \beta)^2\]

\[\hbox{s.t.} \quad \sum_{j=1}^p \beta_j^2 \leq t \quad \hbox{for} \quad t \geq 0\]

The feasible set for this problem is constrained to be

\[s(t) = \{ \underset{\sim}{\beta} \in \mathcal{R}^p : ||\underset{\sim}{\beta}||_2^2 \leq t \}\]

where \(\underset{\sim}{\beta}\) does not include the intercept \(\beta_0\).

Notes:

The RR estimators are not equivalent under a rescaling of all the \(X_j^T\) because of the L2 penalty. This difficulty is circumvented by centering the predictors. In this chapter, design matrix \(X\) will be the centered matrix. In addition, we exclude intercept \(\beta_0\). The use of an L2 penalty in least squares problem is sometimes referred to as Tikhonov regularization. Using a lagrange multiplier, the above constrained minimization problem is equivalent to

\[\min \sum_{i=1}^n (y_i - X_i^T \beta)^2 + \lambda \sum_{j=1}^p \beta_j^2 \quad \hbox{for} \quad \lambda \geq 0\]

There is a one-to-one correspondence between \(t\) in the first minimization problem and \(\lambda\) in this new formulation. A constrained optimization problem is said to be a convex optimization, if both the objective function and the constraints are convex functions. Our constrained optimization problem is a convex minimization problem in \(\beta\).

Analytical minimization

The PRSS (penalized residual sum of squares) for RR is

\[\begin{split}\begin{align*}
PRSS(\beta, \lambda) &= \sum_{i=1}^n (y_i - X_i^T \beta)^2 _ x \sum_{i=1}^p \beta_j^2 \\
&= (y - X \beta)^T (y - X \beta) + \lambda \beta^T \beta
\end{align*}\end{split}\]

\[\begin{split}\begin{align*}
\frac{\partial PRSS}{\partial \beta} &= 2 (X^T X) \beta - 2 X^T y + 2 \lambda \beta = 0\\
&\Longleftrightarrow 2(X^T X) \beta + 2 \lambda \beta = 2 X^T y\\
&\Longleftrightarrow (X^T X + \lambda I) \beta = X^T y\\
\end{align*}\end{split}\]

Ridge estimator is \(\hat{\beta}_R = (X^T X + \lambda I)^{-1} X^T y\).

Since we are adding a positive constant to the diagonal of \(X^TX\), we are producing an invertible matrix \(X^T X + \lambda I\), even if \(X^T X\) is singular. Historically, this particular aspect of RR was the main motivation behind the adoption of this particular extension of OLS theory. In addition, this also shows that \(\hat{\beta}_R\) is still a linear function of the observed values, \(y\). \(\hat{\beta}_R\) is related to the classical OLS estimator,
\(\hat{\beta}_{R} = [I + \lambda (X^T X)^{-1}]^{-1} \hat{\beta}_{OLS}\) assuming that \(X^T X\) is non-singular.

Proof:

\[\begin{split}\begin{align*}
\hat{\beta}_R &= [I + \lambda (X^T X)^{-1}]^{-1} (X^T X)^{-1} X^T y\\
&\hbox{\textcolor{green}{using the fact that $(AB)^{-1} = B^{-1}A^{-1}$}}\\
&=(X^T X (I + \lambda (X^T X)^{-1})^{-1}) X^T y\\
&=(X^T X + \lambda I)^{-1} X^T y\\
\end{align*}\end{split}\]

This shows that the ridge estimator is simply a downweighted version of the OLS estimator.

Bias and variance

Ridge estimation produces a biased estimator of the true parameter \(\beta\). We know that \(E[Y|X] = X\beta\).

\[\begin{split}\begin{align*}
E [\hat{\beta}_R | X] &= [X^T X + \lambda I]^{-1} X^T X \beta\\
&= (X^T X + \lambda I)^{-1} (X^T X + \lambda I - \lambda I) \beta \\
&= (I - \lambda (X^T X + \lambda I)^{-1}) \beta\\
&= \beta - \lambda (X^T X + \lambda I)^{-1} \beta\\
\end{align*}\end{split}\]

The bias of \(\hat{\beta}_R\) is proportional to \(\lambda\). The larger \(\lambda\) is, the alrger the bias of \(\hat{\beta}_R\). Even though the vector of ridge estimators incur a greater bias, it posesses a smaller variance than the vector of OLS estimators. One may compare these 2 quantities by taking the trace of the variance matrices of the 2 methods. The solution \(\hat{\beta}_R\) is indexed by \(\lambda\), i.e. for each \(\lambda\), we have a solution.

\(\lambda\) is the shrinkage parameter

	\(\lambda\) controls the size of the coefficients

	\(\lambda\) controls the amount of the regularization

	as \(\lambda\) goes to 0, we obtain LS solution

	as \(\lambda\) goes to \(\infty\), \(\hat{\beta}_R \xrightarrow{} 0\) (intercept only model)

Data augmentation solution

The L2-PRSS is

\[\begin{split}\begin{align*}
PRSS(\beta, \lambda) &= \sum_{i=1}^n (y_i - X_i^T \beta)^2 + \lambda \sum_{i=1}^p \beta_j^2\\
&= \sum_{i=1}^n (y_i - X_i^T \beta)^2 + \sum_{j=1}^p (0 - \sqrt{\lambda} \beta_j)^2\\
\end{align*}\end{split}\]

So, the L2 criterion can be recast as another least-squares (LS) for another data set.

\[\begin{split}\underset{\sim}{X_\lambda} = \begin{pmatrix}
x\\
\sqrt{\lambda} I_p\\
\end{pmatrix} \qquad \underset{\sim}{y_\lambda} = \begin{pmatrix}
y\\
0\\
\end{pmatrix}\end{split}\]

i.e.

\[\begin{split}\underset{\sim}{\lambda_\lambda} = \begin{pmatrix}
x_{11} & x_{12} & \dots & x_{1p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \dots & x_{np} \\
\sqrt{\lambda} & 0 & \dots & 0 \\
0 & \sqrt{\lambda} & \vdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \dots & \dots & 0 \\
\end{pmatrix}\end{split}\]

\[\begin{split}\underset{\sim}{y_\lambda} = \begin{pmatrix}
y_1\\
y_2\\
\vdots\\
y_n\\
0\\
\vdots\\
0\\
\end{pmatrix}\end{split}\]

So, the LS solution for the augmented data set is

\[\begin{split}(X_\lambda^T X_\lambda)^{-1} X_\lambda^{-1} y_\lambda = \begin{bmatrix}
\begin{pmatrix} X^T & \sqrt{\lambda} I_p \\ \end{pmatrix} & \begin{pmatrix} x \\ \sqrt{\lambda}I_p \end{pmatrix}\\
\end{bmatrix}^{-1} \begin{pmatrix}
X^T & \sqrt{\lambda} I_p\\
\end{pmatrix} \begin{bmatrix}
y \\
0 \\
\end{bmatrix} = (X^T X + \lambda I_p)^{-1} X^T y = \hat{\beta}_R\end{split}\]

Lasso

Tibshirani introduced the lasso (least absolute shrinkage and selection operator) in JRSS, 1996. The lasso, by contrast to RR, tries to produce a sparse solution in the sense that several of the slope parameters will be set to 0. With Lasso, only a subset of the variables are included in the finished model.

Constrained optimization

Lasso is formulated wrt the centered matrix \(X\). The L1 penalty is solely applied to the slope coefficients. And thus, the intercept \(\beta_0\) is excluded from the penalty term. Lasso can be expressed as a constrained minimization problem

\[\min \sum_{i=1}^n (y_i - X_i^T \beta)^2\]

\[\hbox{s.t.} \quad \sum_{j=1}^p |\beta_j| \leq t \quad \hbox{for} \quad t \geq 0\]

Using the lagrange multiplier, the lagrangian is

\[\sum_{i=1}^n (y_i - X_i^T \beta)^2 + \lambda \sum_{j=1}^p |\beta_j|\]

where \(\lambda \geq 0\) and there is a one-to-one correspondence between \(t\) and \(\lambda\). Unlike RR, lasso does not admit a closed form solution. The L1 penalty makes the solution non-linear in the \(y\)s. Again, we have tuning parameter \(\lambda\) that controls the amount of regularization. Have a “path” of solution for each \(\lambda\). If \(\lambda = 0\), no shrinkage and hence obtain the LS solution.Often, we believe that many of the \(\beta_j\)s
should be 0. So, we seek a set of sparse solutions - large enough \(\lambda\) will set some coefficients exactly to 0. So, lasso will perform model solection for us. Original implementation involves quadratic programming techniques from convex optimization. Efron et al (Annals of Sentistics, 2006) proposed LARS (least angle regression), which computes the lasso path efficiently. Interesting modification is called forward stagewise. In many cases, it is the same as Lasso. Lasso is often used
in high-dimensional problems. How can we efficiently compute the lasso solution? The lasso objective \((y - X\beta)^T (y - X \beta) + \lambda ||\beta||\) is not differentiable everywhere on \(\mathcal{R}\). Many strategies exist for minimizing the Lasso objective function:

	LARS

	Coordinate descent

Coordinate descent optimizationS

Minimize a function \(f : \mathcal{R}^n \xrightarrow{} \mathcal{R}\) with \(f(x) = g(x) + \sum_i h_i (X_i)\) (with \(g\) convex, differentiable and each \(h_i\) convex strategy)

Strategy: minimize each coordinate separately while cycling through the coordinates. Start with initial guess \(\underset{\sim}{X}\) and repeat for \(k=1,2,...\)

\[\underset{\sim}{X}^{(0)} = (X_1^{(0)}, X_2^{(0)}, X_3^{(0)}, ..., X_n^{(0)})\]

\[\begin{split}\begin{align*}
X_1^{(k+1)} &= arg\min_{X_1} f(X_1, X_2^{(k)}, X_3^{(k)}, ..., X_n^{(k)}) \\
X_2^{(k+1)} &= arg\min_{X_2} f(X_1^{(k+1)}, X_2, X_3^{(k)}, ..., X_n^{(k)}) \\
X_3^{(k+1)} &= arg\min_{X_3} f(X_1^{(k+1)}, X_2^{(k+1)}, X_3, ..., X_n^{(k)}) \\
\vdots &\\
X_n^{(k+1)} &= arg\min_{X_n} f(X_1^{(k+1)}, X_2^{(k+1)}, X_3^{(k+1)}, ..., X_n^{(k+1)}) \\
\end{align*}\end{split}\]

Note: After we solve for \(X_i(k)\), we use its new value from then on

Neglected technique in the past that gained popularity recently. Does this procedure always converge to an extreme point of the objective function in general? No!

Does coordinate descent work for lasso? Yes! We exploit the fact that the non-differentiable part of the objective is separable.

Let \(\underset{\sim}{X} = (x_1, x_2, ..., x_p)^T\)

Theorem (See Tseng, 2001):

Suppose \(f(\underset{\sim}{X}) = f_o(\underset{\sim}{X}) + \sum_{i=1}^p f_i(X_i) \qquad (f \in \mathcal{R}^p)\)

	\(f_o : \mathcal{R}^p \xrightarrow{} \mathcal{R}\) is convex and continuously differentiable

	\(f_i : \mathcal{R} \xrightarrow{} \mathcal{R}\) is convex \((i=1, ..., p)\)

	The set \(X^{(0)} = \{ \underset{\sim}{X} \in \mathcal{R}^p : f(\underset{\sim}{X}) \leq f(X^{(0)} \}\) is compact

	\(f\) is continuous on \(X^{(0)}\)

Then every limit point of the sequence (\(X^{(k)}\)) \(k\geq 1\) generated by cyclic coordinate descent converge to a global minimum of \(f\). In other words, work of Tseng (2001) proves that for such \(f\), any limit point of \(X^{(k)}, k=1,2,...\) is a minimizer of \(f \quad\) (\(X^\star\) minimizer). \(X^{(k)}\) has subsequences converging to \(X^{(\star)}\) (Bolzano-Weierstrass). \(f(X^{(k)})\) converges to \(f^\star = f(X^{(\star)})\)

Remark:

Order of cycle through coordinates is arbitrary. Can use any permutation of \(\{1, 2, ...,n \}\). Can everywhere replace individual coordinates with block of coordinates. Friedman et al (2007) suggested to use the coordinate descent algorithm to solve the lasso problem (better algorithm than LARS). Digression

Digression: Subdifferential calculus

Suppose \(f\) is convex and differentiable. Then \(f(y) \geq f(x) + \nabla f(x)^T (y - \mu)\)

Definition 1: Let \(f \mathcal{R}^n \xrightarrow{} \mathcal{R}\) be a continuous function (not necessarily differentiable), \(g \in \mathcal{R}^n\) is a subgradient of \(f\) at \(X \in \mathcal{R}^n \quad \hbox{iff} \quad f(y) - f(x) \geq g^T (y - x) \forall y \in \mathcal{R}^n\). The set of all subgradients at \(X\) is \(\partial f(X) = \{ g \in \mathcal{R}^n | g \hbox{ is a subgradient of f at X} \}\) is called the subdifferential at \(f\) at \(X\). The reason
why subgradients are so useful in convex optimization is tha tthey always exist for convex functions.

Proposition 1: Let \(f: \mathcal{R}^n \xrightarrow{} \mathcal{R}\) be a convex continuous function, then \(\partial f(x) \neq 0\) for all \(X \in \mathcal{R}^n\).

Proposition 2: Let \(f: \mathcal{R}^n \xrightarrow{} \mathcal{R}\) be a continuous function, then \(\partial f(x)\) is a closed and convex set.

In cases where \(f\) is differentiable, the relationship between subgradients and the gradient is given by the following proposition:

Proposition 3: Let \(f: \mathcal{R}^n \xrightarrow{} \mathcal{R}\) be a convex continuous function differentiable at \(X \in \mathcal{R}^n\), then

\[\partial f(x) = \{ \nabla f(x) \}\]

Proposition 4: Let \(f: \mathcal{R}^n \xrightarrow{} \mathcal{R}\) be a continuous function and assume that for some \(X\in \mathcal{R}^n\), \(\nabla f(x) \{ g \}\). Then \(f\) is differentiable at \(X\) and \(\nabla f(x) = g\).

Example 1: Let \(f: \mathcal{R} \xrightarrow{} \mathcal{R}\) with \(f(x) = |x|\) \(x \in \mathcal{R}\). The only point at which \(f\) is not differentiable is \(x=0\). At this point, subderivatives are characterized by the inequality \(f(x) * f(0) = gx\) (i.e. \(|x| \geq gx\)). This is simplified to \(g \in [-1, 1]\). For \(x \neq 0\), the subderivatives coincide with the derivative. In summary,

\[\begin{split}\partial f(x) = \begin{Bmatrix}
1 \quad \hbox{if} \quad x > 0 \\
[-1,1] \quad \hbox{if} \quad x = 0 \\
-1 \quad \hbox{if} \quad x < 0 \\
\end{Bmatrix}\end{split}\]

In the same way, stationary points characterize optimal points for convex functions, we have the following proposition.

Proposition 5: Let \(f\) be a convex continuous function, \(X^\star \in \mathcal{R}^n\) is a global minimizer of \(f \quad \hbox{iff} \quad 0 \in \partial f(x)\)

Solution of Lasso using coordinate descent algorithm

Want to minimize

\[f(\beta) = \frac{1}{2} \sum_{i=1}^n (y_i - \sum_{j=1}^p X_{ij} \beta_j)^2 + \lambda \sum_{j=1}^p |\beta_j|\]

First assume that we have 1 predictor (\(p=1\)). So, \(f(\beta) = \frac{1}{2} \sum_{i=1}^n (y_i - \beta X_i)^2 + \lambda |\beta|\). For \(\beta > 0\), the subgradient of \(f\) at \(\beta\) is \(\sum (-X_i) (y_i - \beta X_i) + \lambda\) if \(\beta > 0\). Equivalently, \(\sum (- X_i y_i + \beta \sum X_i^2) + \lambda\) if \(\beta > 0\).

Use a similar argument for \(\beta < 0\). So, the subgradients of \(f\) at \(\beta\)

\[\begin{split}\begin{cases}
-\sum X_i y_i + \beta + \lambda \quad \hbox{if} \quad \beta > 0\\
-\sum X_i y_i + \beta - \lambda \quad \hbox{if} \quad \beta < 0\\
-\sum X_i y_i - \lambda, -\sum X_i y_i + \lambda \quad \hbox{if} \quad \beta = 0\\
\end{cases}\end{split}\]

Next if \(\beta > 0\), setting the subgradient of \(f\) at \(\beta\) to 0 yields

\[-\sum X_i y_i + \beta + \lambda = 0 \Longleftrightarrow \beta = \sum X_i y_i - \lambda\]

For \(\beta < 0\)

\[-\sum X_i y_i + \beta - \lambda = 0 \Longleftrightarrow \beta = \sum X_i y_i + \lambda\]

If \(\beta = 0\)

\[- \lambda < \sum X_i y_i < \lambda\]

Hence, Lasso solution for \(p=1\) is

\[\begin{split}\hat{\beta}_L = \begin{Bmatrix}
\hat{\beta}_{OLS} - \lambda \quad \hbox{if} \quad \hat{\beta}_{OLS} > \lambda\\
\hat{\beta}_{OLS} + \lambda \quad \hbox{if} \quad \hat{\beta}_{OLS} < -\lambda\\
0 \quad \hbox{if} \quad \hat{\beta} \in [-\lambda, \lambda]\\
\end{Bmatrix}\end{split}\]

then \(\hat{\beta}_L = S(\hat{\beta}_{OLS}, \lambda)\). In the general case, we can rewrite \(f(\beta)\) as

\[f(\beta) = \frac{1}{2} \sum_{i=1}^n (y_i - \sum_{k \neq j} X_{ik} \tilde{\beta}_k - X_{ij} \beta_j)^2 + \lambda \sim_{k\neq j} |\hat{\beta}_k| + \lambda |\beta_j | + ADDON\]

where \(ADDON = \mu \sum_{k \neq j} \hat{\beta}_k^2 + \mu \beta_j^2\) is just added on if wanted. Let \(r_i = y_i - \sum_{k \neq j} x_{ik} \hat{\beta}_k\) be the partial residual. The subgradients of the full objective at \(\beta_j\) are

\[\begin{split}\begin{Bmatrix}
\sum - X_{ij} r_i + \beta_j + \lambda \quad \hbox{if} \quad \beta_j > 0\\
\sum - X_{ij} r_i + \beta_j - \lambda \quad \hbox{if} \quad \beta_j < 0\\
\sum - \sum X_{ij} r_i - \lambda_1 - \sum X_{ij} r_j + \lambda \quad \hbox{if} \quad \beta_j = 0\\
\end{Bmatrix}\end{split}\]

as \(\sum X_{ij}^2 = 1\). Set subgradients to 0, we get \(\star\) if \(\beta_j < 0\), \(\sum X_{ij} r_i + \beta_j - \lambda = 0 \Longleftrightarrow \beta_j = \sum X_{ij} r_i + \lambda < 0 \Rightarrow \sum X_{ij} r_i < - \lambda\).

If \(\beta_j > 0, \quad \beta_j = \sum X_{ij} r_i - \lambda > 0 \Rightarrow \sum X_{ij} r_i > \lambda\).

If $:nbsphinx-math:beta `= 0, :nbsphinx-math:quad -:nbsphinx-math:lambda < sum X_{ij} r_i < lambda $

So, $$hat{beta}_j^L = begin{Bmatrix}
sum X_{ij} r_i + lambda quad hbox{if} quad sum X_{ij} r_i < - lambda \
0 quad hbox{if} quad sum X_{ij} r_i in [-lambda, lambda]\
sum X_{ij} r_i - lambda quad hbox{if} quad sum X_{ij} r_i >` :nbsphinx-math:`lambda `\ \end{Bmatrix}$$

Summary

Even though \(X^T X\) may not be of full rank, both RR and lasso admit solutions. OLS has a problem when \(p >> n\). Regularization tends to reduce prediction error. Assume that \(p >> n\). RR produces coefficient values for each of the \(p\)-variables. But, because of the L1 penalty, Lasso will set many of the variables exactly equal to 0. This means that Lasso produces sparse solutions. So, Lasso takes care of model selection. Zou and Hastie (2005) propose the Elastic Net,
which is a convex combination of L1 and L2 penalties.

 SVM Adaptations

SVM Adaptations

First, recall the SVM problem.

\[\min_{w, \xi} ||w||^2 + C \sum_i \xi_i\]

\[\hbox{s.t.} \quad y(w^T X_i + b) \geq 1 - \xi_i, \quad \forall_i = 1, ..., n \quad \hbox{and} \quad \xi_i \geq 0, \quad \forall_i = 1, ..., n\]

Every constraint can be satisfied if \(\xi_i\) is sufficiently large. \(C\) is a regularization parameter. A small \(C\) allows constraints to be easily ignored, causing a large margin. A large \(C\) makes constraints hard to ignore, causing a narrow margin. If \(C\) is \(\infty\), it enforces all constraints, causing a hard margin. This is a quadratic optimization problem and there is a unique minimum.

Optimization

Learning an SVM algorithm has been formulated as a constrained optimization problem wrt \(w\) and \(\xi\). The constraint \(y_i (w^T X_i + b) \geq 1 - \xi_i\) can be written more concisely as

\[y_i f(X_i) \geq 1 - \xi_i \quad \hbox{with} \quad f(X_i) = w^T X_i + b\]

This means that \(\xi_i \geq 1 - y_i f(X_i)\). With \(\xi_i \geq 0\), we have

\[\xi_i = \max (0, 1 - y_i f(X_i))\]

Hence, the learning problem is equivalent to the unconstrained optimization problem over \(w\).

\[X = \underbrace{\min_w ||w||^2}_{regularization} + \underbrace{C \sum_{i=1}^N \max (0, 1 - y_i f(X_i)) }_{\hbox{loss function}}\]

Points are in 3 categories:

	\(y_i f(X_i) > 1\): point is outside the margin, no contribution to loss

	\(y_i f(X_i) = 1\): point is on the margin, no contribution to loss

	\(y_i f(X_i) < 1\): point violates margin constraint, so contributes to loss

This loss function, \(\max (0, 1 - y_i f(X_i))\) is called the “hinge” loss. It penalizes weight vectors that make mistakes. This is just one example.

Q1: Does the SVM cost function have a unique solution?

Q2: Does the solution depend on the starting point of an iterative optimization algorithm?

If the cost function is convex, then a locally optimal point is globally optimal (provided the optimization is over a convex set).

The SVM cost function is convex in \(w, b\).

Stochastic Gradient Descent algorithm for SVM

The objective function of SVM is a quad optimization problem because the objective is quadratic. We can use older method like QP (very slow). As we don’t have constraints in the new unconstrained problem, we use gradient descent (still very slow). We are interested in finding \(w\) which minimizes the following objective

\[\min_w \sum_{i=1}^N f_i(w)\]

where \(f_i\) are functions from vectors \(w\) to scalars. The idea of SGD is to iterate over the function \(f_i\) and update the vector \(w\) after each iteration. The update at each iteration is

\[w^{(t+1)} = w^{(t)} - \eta \nabla w f_i (w^{(t)})\]

where \(\nabla w f_i (w)\) is the gradient of \(f_i (w)\). We apply the result to SVM. The function \(f_i\) are the form \(f_i(w) = \max (0, 1 - y_i f(x_i))\). The hinge loss is not differentiable. So, the gradrient of these functions is not defined. Instead, the subgradient is defined as

\[\begin{split}\nabla_m \Bigl[\max \bigl\{ 0, 1 - y f(X) \bigr\} \Bigr] = \begin{Bmatrix}
-y X \quad \hbox{if} \quad y f(X) < 1\\
0 \quad O.W.\\
\end{Bmatrix}\end{split}\]

Hence, the subgradient of the SVM objective function is

\[\begin{split}\begin{Bmatrix}
w - C y_i X_i \quad \hbox{if} \quad y_i f(X_i) < 1\\
w \quad O.W.\\
\end{Bmatrix}\end{split}\]

So, the stochastic subgradient descent algorithm is:

Algorithm

Input: training set \(S = \bigl\{ (\underset{\sim}{X_1}, y_1), ..., (\underset{\sim}{X_N}, y_N) \bigr\}, \quad C, \eta\)

	Initialize \(w = 0\)

	For \(t=1, ...\)

	Choose example \((\underset{\sim}{X_i}), y_i)\) uniformly at random.

	Set \(\eta_t = \frac{n}{\sqrt{t}}\).

If \(1 - y_i f(X_i) \geq 0\), \(w^{(t+1)} = w^{(t)} - \eta_t (w^{(t)} - C y_i \underset{\sim}{X_i}) = (1 - \eta_t) w^{(t)} + \eta_t C y_i \underset{\sim}{X_i}\)

Else,

\[w^{(t+1)} = w^{(t)} - \eta_t w^{(t)} = w^{(t)} (1 - \eta_t)\]

	return \(w\)

One Class Classification

SVM is designed to perform binary classification. In some applications, we do not have 2-class data (e.g. fraud detection, surveillance outbreak detecetion, anomaly detection, outlier detection) but only one-class data in the design phase. The SVM method cannot be directly applied. This is called the one-class classification problem. Schokopf et al proposed one-class SVM. OCSVM basically separates all the data from its origin, and maximizes the distance from the hyperplane to the origin 0. Tax
and Duin (1999) presented the support vector data description (SVDD).

One-class SVM (OCSVM)

The OCSVM consists of solving the following primal problem. Assume a training set \(\bigl\{ X_i \bigr\}_{i=1}^n, \quad X_i \in \mathcal{R}^p\). The primal problem is

\[\min_{w, \rho, \xi} \frac{1}{2} ||w||^2 - \rho + C \sum_{i=1}^N \xi_i\]

\[\hbox{s.t.} \quad w^T \phi(X_i) \geq \rho - \xi_i, i=1,2,...,N \quad \hbox{and} \quad \xi_i \geq 0, i=1,2,...,N\]

where \(\xi_i\) is the slack variable, the parameter \(C>0\) is introduced to control the influence of the slack variables, and \(\phi\) is a function mapping data to a higher dimensional space (Hilbert). This problem can be solved through the Lagrange dual problem, which is usually easier to solve than the primal. The dual problem is:

\[\min_\alpha \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j \phi(X_i)^T \phi(X_j)\]

\[\hbox{s.t.} \quad 0 \leq \alpha_i \leq C, \forall_i \quad \hbox{and} \quad \sum_{i=1}^N \alpha_i = 1\]

where \(\alpha_i, i=1,2,...,N\) are the Lagrange multipliers. Note that the lagrange multipliers are positive. If we let \(k(x,y)\) represent the inner product \(\phi(X)^T \phi(X)\) in a higher dimension space, the dual problem becomes

\[\min_\alpha \frac{1}{2} \sum_{i,j=1}^N \alpha_i \alpha_j k(X_i, X_j)\]

\[\hbox{s.t.} \quad 0 \leq \alpha_i \leq C, \forall_i \quad \hbox{and} \quad \sum_{i=1}^N \alpha_i = 1\]

To solve, we follow these steps:

	Get the Lagrangian

	Take the derivative wrt the primal variable \(w, \rho, \xi_i\)

	Substitute these in the lagrangian \(L\) This should give the dual problem

The quadratic problem is a quadratic problem (QP) and can be solved easily using any quad prog software to obtain \(\alpha^\star\). The hyperplane corresponding to this classification rule is \(f(\underset{\sim}{X}) = \underset{\sim}{w}^T \phi(X_i) - \rho\) where \(\underset{\sim}{w}\) is a normal vector and \(\rho\) is a bias term. The next step is to evaluate \(\rho\), which can be found by using a nonzero SV \(X\)s. Alternatively, this can be achieved by using the
set of all non-zero SV and find the average over all SV

\[\rho = \frac{1}{N_s} \sum_{s \in S} \Bigl(\sum_{j \in S} \alpha_i^\star k(X_s, X_i) \Bigr)\]

The hyperplane becomes now \(f(\underset{\sim}{X}) = \sum_i \alpha_i k(\underset{\sim}{X}, \underset{\sim}{X_i}) - \rho\). Each new observation \(\underset{\sim}{u}\) is classified by evaluating $g(\underset{\sim}{u}) = sign f(\underset{\sim}{u}) \tilde{=} sign \Bigl`(:nbsphinx-math:sum`_i \alpha_i k(\underset{\sim}{u}, X_i) - \rho `:nbsphinx-math:Bigr`) $. If
\(g(\underset{\sim}{u}) = 1\), then \(\underset{\sim}{u}\) is classified as target (or normal). Otherwise, \(\underset{\sim}{u}\) is classified as outlier.

SVDD

Assuming a training set \(\Bigl\{ X_i \Bigr\}_{i=1}^n, X_i \in \mathbf{R}^p\). The goal is to find a sphere characterized by a center “\(\underset{\sim}{a}\)” and a radius \(r\) with a minimum volume that can envelope all of the data points in training set. Mathematically,

\[\min r^2 + C \sum_{i=1}^N \xi_i\]

\[\hbox{s.t.} || \phi(X_i) - a ||^2 \leq r^2 + \xi_i, \forall_i \quad \hbox{and} \quad \xi_i \geq 0, \forall_i\]

where \(\xi_i, i=1,..., N\) are slack variables, \(C>0\) is a given trade-off between the volume of the sphere and the number of target objects rejected and \(\phi\) is a function mapping data to a higher dimensional space.

	The lagrangian is

\[L = r^2 + C \sum_i \xi_i - \sum_{i=1}^N \alpha_i \Bigl(r^2 + \xi_i - || \phi(X_i) - a ||^2 \Bigr) - \sum_i \beta_i \xi_i\]

where \(\alpha_i\) and \(\beta_i\) are the lagrangian multipliers.

	Take the derivative wrt the primal variables

\[\frac{\partial L}{\partial r} = 2r - 2r \sum \alpha_i = 0 \Rightarrow \sum \alpha_i = 1\]

\[\frac{\partial L}{\partial a} = a - \sum \alpha_i \phi(X_i) = 0 \Rightarrow a = \sum \alpha_i \phi(X_i)\]

\[\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \beta_i = 0, \forall_i\]

	Substituting these derivations back into the Lagrangian, yields the dual problem written initially.

\[\max_\alpha \sum \alpha_i k(X_i, X_j) - \sum_{i,j} \alpha_i \alpha_j k(X_i, X_j)\]

\[\hbox{s.t.} \sum \alpha_i = 1 \quad \hbox{and} \quad 0 \leq \alpha_i \leq C, \forall_i\]

where \(k(X,y) = \phi(X)^T \phi(y)\) is a kernel function. This is a quadratic programming problem and can be solved by any QP software.

Stationarity

\(1 - \sum \alpha_i = 0\)

\(\alpha - \sum \alpha_i \phi(X_i) = 0\)

$ C - \alpha_i - \beta_i = 0$

Primal admissibility

\(\phi(X_i) - a||^2 \leq r^2 + \xi_i\)

\(\xi_i \geq 0\)

Dual admissibility

\(\alpha_i \geq 0\)

\(\beta_i \geq 0\)

Complementary slackness

\(\alpha_i \Bigl(||\phi(X_i) - a||^2 - r^2 - \xi_i \Bigr) = 0\)

\(\beta_i \xi_i = 0\)

From the first condition of the complementary slackness condition,

\[\alpha_i \Bigl(||\phi(X_i) - a||^2 - r^2 - \xi_i \Bigr) = 0 \Longleftrightarrow \alpha_i = 0 \quad \hbox{or} \quad ||\phi(X_i) - a||^2 - r^2 - \xi_i = 0\]

When an object \(X_i\) satisfies the inequality \(||\phi(X_i) - a||^2 < r^2 + \xi_i\), the constraint is satisfied and the corresponding Lagrange multiplier will be 0 \(\alpha_i = 0\). For object \(X_i\) satisfying \(||\phi(X_i) - a||^2 = r^2 + \xi_i\), the constraint has to be enforced and the corresponding Lagrange multiplier \(\alpha_i > 0\). This means

	\(\alpha_i = 0 \quad \xrightarrow{} \quad ||\phi(X_i) - a||^2 < r^2\)

	$ 0 < \alpha_i < C \quad `:nbsphinx-math:xrightarrow{}` \quad `\|\|:nbsphinx-math:phi`(X_i) - a||^2 = r^2$

	\(\alpha_i = C \quad \xrightarrow{} \quad ||\phi(X_i) - a||^2 > r^2\)

Coloqually,

	means that the data points whose \(\alpha_i=0\) are inside the sphere

	means that the data points whose \(0 < \alpha_i < C\) are on the boundary

	means the data points whose \(\alpha_i = C\) fall outside the sphere and have non-zero \(\xi_i\)

Only objects \(X_i\) with \(\alpha_i > 0\) are needed in the data description. The objects are called the support vectors. The center is given by \(a = \sum \alpha_i \phi(X_i)\). The objects \(X_i\) that correspond to \(0 < \alpha_i < C\) are called the bounded SV. The objects that correspond to \(\alpha_i = C\) are called unbounded SV. The radius \(r\) is determined by taking any \(X\)s on the sphere boundary and calculating its distance to the center. This
means that

\[r^2 = ||\phi(X_i) - a ||^2 = k(X_s, X_s) - 2 \sum_{X_i \in SV} \alpha_k k(X_i, X_s) + \sum_{X_{ij} \in SV} \alpha_i \alpha_j k(X_i, X_j)\]

To test an unseen data \(Z\), the distance \(||\phi(Z) - a||^2\) is calculated. An unseen data is accepted as target if the distance \(||\phi(Z) - a||^2\) is smaller or equal than the radius

\[\begin{split}\begin{align*}
||\phi(Z) - a||^2 &= (\phi(Z) - a)^T (\phi(Z) - a)\\
&= \phi(Z)^T \phi(Z) - 2 \alpha \phi(Z) + a^T a \\
&= k(z,z) - 2 \sum \alpha_i k(z, X_i) + \sum_{i,j} \alpha_i \alpha_j k(X_i, X_j)\\
\end{align*}\end{split}\]

This means that

\[d(z,a) = k(z,z) - 2 \sum_i \alpha_i k(z, X_i) + \sum_{i,j} \alpha_i \alpha_j k(X_i, X_j) \leq r^2\]

Otherwise, \(Z\) is an outlier.

Least Squares SVDD (LS-SVDD)

To derive least-squares version of SVDD, we reformulate SVDD by using a quadratic error criterion and equality constraints. Consider a training set \(X_j, j=1,...,N\). We want to find a model that gives a closed boundary around the data. This closed boundary is a sphere defined by its center “c” and radius “R”. This means

\[\min R^2 + \frac{C}{2} \sum_{j=1}^N \xi_j^2\]

\[\hbox{s.t.} \quad ||\phi(X_j) - \underset{\sim}{C}||^2 = R^2 + \xi_j, \quad j=1,...,N\]

Here, the constraints for the slack variables \(\xi_j \geq 0\) in the SVDD are no longer needed. Instead, one can think of the variable \(\xi_j\) as an error realized by a training vector \(X_j\) wrt the hypersphere.

The typical approach to solve this optimization problem is to use the Lagrange multiplier. The multiplier is

\[L = R^2 + \frac{C}{2} \sum_j \xi_j^2 - \sum_j \alpha_j \Bigl(R^2 + \xi_j - || \phi(X_j) - \underset{\sim}{C} ||^2 \Bigr)\]

where \(\alpha_j, j=1, ..., N\) are the Lagrangian multipliers, which can be either positive or negative due to the equality constraints. Differentiating \(L\) wrt the primal variables and setting the derivatives to 0 gives

\[\frac{\partial L}{\partial R} = \sum \alpha_j - 1 = 0 \Rightarrow \sum \alpha_j = 1\]

\[\frac{\partial L}{\partial \xi_j} = \alpha_j - C \xi_j = 0 \Rightarrow \alpha_j = C \xi_j\]

\[\begin{split}\begin{align*}
\frac{\partial L}{\partial C} = 0 &\\
&\Rightarrow \underset{\sim}{C} = \sum_j \alpha_j \phi(X_j)\\
&\hbox{\textcolor{green}{using $\sum \alpha_j = 1$}}\\
&\Rightarrow \underset{\sim}{C} = \sum_j \alpha_j \phi(X_j) / \sum \alpha_j \\
\end{align*}\end{split}\]

From \(\alpha_j = C \xi_j\), it follows that the support vectors \(\alpha_j\) are proportional to the errors \(\xi_j\) at the data points in the LS-SVDD case, while in SVDD, many support values are typically 0.

Inserting these derivations into the Lagrangian yields the dual problem

\[\max_\alpha \sum_j \alpha_j k(X_j, X_j) - \sum_{i,j} \alpha_i \alpha_j \Bigl(k(X_i, X_j) + \frac{1}{2C} \delta_{ij} \Bigr)\]

\[\hbox{s.t.} \sum_j \alpha_j = 1\]

\[\begin{split}\hbox{where}\quad \delta_{ij} = \begin{cases}
1 & \hbox{if } i=j\\
0 & o.w.\\
\end{cases}\end{split}\]

\(\delta_{ij}\) is called the Kronecker \(\delta\). Guo eta al. (2016) suggested solving the dual problem by using QP. The dual problem involves only a single equality constraint, unlike SVDD where there are multiple inequality constraints. The dual is no longer a quadratic programming problem, as in the SVDD case, but a quadratic problem and has an analytic solution.

Let \(\underset{\sim}{K}\) denote the Gram matrix with entries \(K_{ij} = k(X_i, X_j)\). \(\underset{\sim}{I_N}\) denotes the identity matrix.

\[\underset{\sim}{H} = \underset{\sim}{K} + \frac{1}{2} \underset{\sim}{I_N}, \quad \underset{\sim}{e} = (1,1,...,1)^T, \quad \underset{\sim}{\alpha} = \Bigl(\alpha_1, \alpha_2, ..., \alpha_N \Bigr)^T\]

and \(\underset{\sim}{k}\) denotes a vector with entries \(k_j = k(X_i, X_j), j=1,2,...,N\). It follows that $:nbsphinx-math:underset{sim}{alpha} = \frac{1}{2} H^{-1} \biggl`(:nbsphinx-math:underset{sim}{k}` + \frac{2 - \underset{\sim}{e} \underset{\sim}{H}^{-1} \underset{\sim}{k} }{\underset{\sim}{e}^T \underset{\sim}{H}^T \underset{\sim}{e} } \biggr) \underset{\sim}{e} $. Also,
\(\underset{\sim}{\xi} = \frac{1}{2c} H^{-1} \biggl(\underset{\sim}{k} + \frac{2 - \underset{\sim}{e} \underset{\sim}{H}^{-1} \underset{\sim}{k} }{\underset{\sim}{e}^T \underset{\sim}{H}^T \underset{\sim}{e} } \biggr) \underset{\sim}{e}\). Once the analytic solution for \(\underset{\sim}{\alpha}\) is obtained, the radius is \(R^2 = \frac{1}{N} \sum_{s=1}^N \biggl(k(X_s, X_s) - 2 \sum_j \alpha_j k(X_s, X_j) + \sum_{i,j} \alpha_i \alpha_j k(X_i, X_j) \biggr)\). A test vector
\(Z\) is a target if

\[k(z,z) - 2 \sum_j \alpha_j k(z, X_j) + \sum_{i,j} \alpha_i \alpha_j k(X_i, X_j) \leq R^2\]

Solution of primal problem

\[\min R^2 + \frac{C}{2} \sum \xi_i^2\]

\[\hbox{s.t.} \quad ||X_j - \underset{\sim}{c}||^2 = R^2 + \xi_j\]

Here, \(\xi_j = ||X_j - \underset{\sim}{C}||^2 - R^2\). The constrained optimization problem can be replaced by the unconstrained optimization problem: \(\min \frac{\lambda}{2} R^2 + \frac{1}{2} \sum_j \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr)^2\) where \(\lambda = \frac{1}{C}\). Let \(J_1(R, \underset{\sim}{C}) = \frac{\lambda}{2} R^2 + \frac{1}{2} \sum_j \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr)^2\), the \(J_1\) is strongly convex. So, a locally optimal
point is globally optimal. This is the gradient descent method for LS-SVDD. Find the gradients wrt the primal variables \(R\) and \(\underset{\sim}{C}\).

	Define a vector \(\underset{\sim}{u} = \begin{pmatrix}\underset{\sim}{C}\\R\end{pmatrix}\) wrt \(\underset{\sim}{C}\) and \(R\)

	Or get the gradients wrt \(\underset{\sim}{C}\) and \(R\): \(\frac{\partial J_1}{\partial R}, \frac{\partial J_1}{\partial \underset{\sim}{C}}\)

Let \(J_2 = \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr)^2\), then

\[\frac{\partial J_2}{\partial R} = -4r ||X_j - \underset{\sim}{C}||^2 + 4R^3 = -4R \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr)\]

\[\frac{\partial J_2}{\partial \underset{\sim}{C}} = -4 (X_j - \underset{\sim}{C}) \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr)\]

So, the gradient for \(J_1\) becomes

\[\frac{\partial J_1}{\partial R} = R \biggl(\lambda - 2 \sum_{j} \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr) \biggr)\]

\[\frac{\partial J_1}{\partial \underset{\sim}{C}} = -2 \sum_j (X_j - \underset{\sim}{C}) \Bigl(||X_j - \underset{\sim}{C}||^2 - R^2 \Bigr)\]

Next, the gradient descent update is \(R_{t+1} = R_t - \eta\) and \(\underset{\sim}{C_{t+1}} = \underset{\sim}{C_t} - \eta\).

 Bootstrapping

Bootstrapping

Can we estimate the mean of a distribution without using a parametric model?

Key idea is to first estimate the distribution non-parametrically, and then get an estimate of the mean.

What about the standard error of that estimator? How to get a C.I.

Bootstrapping!

Bootstrap principle

Empirical distribution

Let \(x_1, ..., x_n\) be an independent real-valued random variable with distribution \(P\).

Define a pdf \(\hat{P}\) by

\[\hat{P}(A) = \frac{1}{n} \sum_{i=1}^n I_A(x_i)\]

where \(I_A (x_i) = \begin{cases} 1 & if x_i \in A\\ 0 & o.w.\\ \end{cases}\)

\(\hat{P}\) is called the empirical distribution of the sample \(X\). \(\hat{P}\) can be thought as the distribution which puts mass \(\frac{1}{n}\) on each observation \(X_i\). It can be shown that \(\hat{P}\) is a nonparametric likelihood estimator of \(P\). This justifies estimating \(P\) by \(\hat{P}\) if no other information about \(P\) is available.

Theorem: Let \(A \leq \mathbf{R}\) (s.t. \(P(A)\) is defined, i.e. \(A\) belongs to the Borel \(\sigma\)-algebra), then \(\hat{P}(A) \xrightarrow{} P(A)\) as \(n \xrightarrow{} \infty\). This result can proved using the Law of Large Numbers.

Proof:

\[n \hat{P}(A) = \sum_{i=1}^n I_A (x_i) \sim Bin(n, P(A))\]

This is a binomial because of our indicator function above. We then use the law of large numbers to say \(\hat{P}(A) \xrightarrow{} P(A)\), its expectation, as \(n\xrightarrow{} \infty\). In other words, the distribution \(P(A)\) can be approximated by \(\hat{P}(A)\) equally well. for all \(A \in I\) where \(I\) is the set of all intervals of \(\mathbf{R}\). This is the empirical distribution.

Empirical distribution function

Move in the direction of a CDF. Let \(x_1, ..., x_n \sim F\) where \(F(x) = P(X \leq x)\). Now because we cna relate the \(F\) to the \(P\), which was defined above, we can relate to the content above.

We can estimate \(F\) with the empirical distribution function \(\hat{F}_n\), the CDF that puts mass \(\frac{1}{n}\) at each data point \(x_i\).

\[\hat{F}_n (x) = \frac{1}{n} \sum_{i=1}^n I(X_i \leq x)\]

where \(I(x_i \leq x) = \begin{cases} 1 & if X_i \leq x\\ 0 & o.w.\\ \end{cases}\)

According to Glivenko-Cautelli theorem

\[sup_x |\hat{F}_n(x) - F(x)| \xrightarrow[a.s.]{} 0\]

Here, \(\hat{F}_n(x) \xrightarrow[a.s.]{} F(x)\) as \(n \xrightarrow{} \infty\). This is called a consistent estimator of \(F\). In fact, the convergence is fast.

Sampling from the empirical distribution \(\hat{F}_n\)

To recap, we have a distribution \(F\) which we do not know. So, we can use the estimator \(\hat{F}_n\), and we know that this estimator is a consistent estimator of \(F\). So, how do we get a sample from \(\hat{F}_n\)?

Suppose we want to draw an iid sample \(\vec{X}^\star = (X_1^\star, ..., X_n^\star)^T\) from \(\hat{F}_n\). When sampling from \(\hat{F}_n\), the \(i\)th observation \(X_i\) in the original sample is selected with probability \(\frac{1}{n}\). If we use this idea, we can define a two-step procedure to do our sampling.

Step 1: Draw \(i_1, i_2, ..., i_n\) independently from the uniform distribution. \(\{ 1, 2, 3, ..., n \}\).

Step 2: Set \(X_j^\star = X_{ij}\) and \(\vec{X}^\star = (X_{i_1}^\star, ..., X_{i_n}^\star)^T\)

For example, let’s say \(\vec{X} = (3,2,7,8,10,25)^T\) is a sample coming from a distribution that we do not know. Now, we want a sample from the empirical distribution \(\hat{F}_n\) of \(X\).

Step 1: Draw \(i_1, i_2, i_3, i_4, i_5, i_6\) from the uniform \(\{ 1,2,3,4,5,6 \}\). Assume that \(i_1 = 6, i_2=3, i_3 = 1, i_4 = 2, i_5=1, i_6 = 3\) comes from the first drawing of the uniform, for instance.

Step 2: We assign \(X_j^\star = X_{ij}\). So, in our first sample \(\vec{X}_1^\star = (x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}, x_{i_6}) = (X_6, X_3, X_1, X_2, X_1, X_3) = (25, 7, 3, 2, 3, 7)\)

Each sample must have \(n\) samples! We sample with replacement from the original sample \(X_1, X_2, ..., X_n\).

So, sampling from \(\hat{F}_n\) is the same as saying sampling with replacement from the original sample.

Bootstrap principle

Let \(\vec{X} = (X_1, ..., X_n)^T\) be a random sample from \(F\). Let \(\theta = t(F)\) be some parameter of the distribution \(F\).

\(\hat{\theta} = s(\vec{X})\) is an estimate of \(\theta\).

Example: \(\vec{X} = (X_1, ..., X_n) \sim F\),

\(\theta = \mu (= t(F))\), which is a parameter

\(\hat{\theta} = \bar{X} (= s(\vec{X}))\), which is a function of the sample, and is an estimator of \(\theta\)

To evaluate statistical properties (bias or standard error) of \(\hat{\theta}\), we need to estimate the sampling distribution of \(\hat{\theta}\). The bootstrap method mimics the data generating process by sampling an estimate \(\hat{F}_n\) of \(F\). The role of the above real quantities is taken by their analogous quantities in the “bootstrap world”.

\(\vec{X}^\star = (X_1^\star, ..., X_n^\star)^T\) is a bootstrap sample from \(\hat{F}_n\).

\(\theta^\star = t(\hat{F}_n)\) is the parameter in the bootstrap world.

\(\hat{\theta}^\star = s(\vec{X}^\star)\) is the bootstrap replication for \(\theta\)

So, we have our bootstrap sample data \(\vec{X}^\star\) is found using sample with replacement. Then, we have \(\theta\) which we are trying to understand. We have \(\theta^\star\) which is the parameter in the bootstrap world. \(\hat{\theta}^\star\) is the estimated \(\theta\).

So, what is the sampling distribution of \(\hat{\theta}\)? This is estimated by its bootstrap equivalent \(\hat{\theta}^\star\).

[]:

import numpy as np
n = 1000
sets = 100
i = np.random.uniform(0,1,(sets, n))

The bootstrap principal can be summarized as follows:

In the real world, we see some unknown probabldy distribution and we have a sample, with the goal of getting a statistic from the underlying distribution.

We have an unknown probability distribution (Usually denoted as \(P\) or \(F\)) and an observed random sample \(\vec{x}\).

\[P, F \xrightarrow{} \vec{x} = (x_1, ..., x_u)\]

producing \(\hat{\theta} = s(\vec{x})\), which is the statistic of interest

In the bootstrap world, we have an empirical distribution (usually denoted as \(\hat{P}\) or \(\hat{F}_n\)) and a bootstrap sample \(\vec{x}^\star\). The bootstrap sample is derived from the observed random sample \(\vec{x}\). In the bootstrap world, the observed random sample \(\vec{x}\) acts as the “population”. Some people call the \(\vec{x}^\star\) a “sample of a sample”.

\[\hat{P}, \hat{F}_n \xrightarrow{} \vec{x}^\star = (x_1^\star, ..., x_n^\star)\]

producing \(\hat{\theta}^\star = s(\vec{x}^\star)\), which is the bootstrap replication

Even though the distribution of the boostrap sample \(\vec{x}^\star\) is known, the evaluation of the exact bootstrap sampling distribution of \(\hat{\theta}^\star\) can still be intractable (aka, a tough problem).

Example: Bootstrap median

Let’s say our stat of interest is the median. Our bootstrap sample can still be generated and we can get the bootstrap median. But, what is the sampling distribution of the sample median?

In general, the bootstrap estimate of the sampling distribution of \(\hat{\theta}^\star\) is computed using the monte carlo method.

Algorithm

Step 1: Draw \(B\) independent bootstrap samples \(\vec{X}^{(\star) (1)}, ..., \vec{X}^{(\star) (B)}\) from \(\hat{F}_n\) (i.e. samples of size \(n\) (with replacement) repeated \(B\) times)

This will generate a lot of \(\hat{\theta}^\star\) and we can visualize it in a distribution.

Step 2: Evaluate the bootstrap replications \(\hat{\theta}^\star = s(\vec{X}^{\star (b)})\), \(b = 1, ..., B\)

Step 3: Estimate the sampling distribution of \(\hat{\theta}\) by the empirical distribution of the bootstrap replications \(\hat{\theta}^{\star (1)}, ..., \hat{\theta}^{\star (B)}\)

Question: Why should bootstrap work?

Glivenko-Cantelli Theorem says that \(\hat{F}_n \xrightarrow[a.s.]{} F\) as \(n \xrightarrow{} \infty\). So, iid sampling from \(\hat{F}_n\) should be approximately the same as iid sampling from \(F\) when \(n\) is large.

Applications

Bootstrap for standard error (s.e.)

Let \(\theta = s(\vec{x})\) be an estimator for \(\theta\) and suppose we want to know the s.e. of \(\hat{\theta}\).

Algorithm:

Step 1: Draw \(B\) independent samples \(\vec{X}^{\star (1)}, ..., \vec{X}^{\star (B)}\) from \(\hat{F}_n\).

Step 2: Evaluate the bootstrap replications \(\hat{\theta}^\star = s(\vec{X}^{\star (b)})\), \(b = 1, ..., B\)

Step 3: Estimate the s.e., \(se(\hat{\theta})\), by the standard deviation of the \(B\) replications.

\[se_{boot}(\hat{\theta}) = [\frac{1}{B-1} \sum_{b=1}^B (\hat{\theta}^{\star (b)} - \hat{\theta}^{\star (o)})^2]^{1/2}\]

where \(\hat{\theta}^{\star o} = \frac{1}{B} \sum_{b=1}^B \hat{\theta}^{\star (b)}\)

Remark: \(\bar{\hat{\theta}}^\star\) or \(\hat{\theta}^{\star (o)}\): mean of the bootstrap replications

[1]:

import numpy as np
from numpy.random import choice
import matplotlib.pyplot as plt

n=1000
rv = np.random.randint(0,10,n)

TODO: FINISH
def bootstrap(samples, statistic_func, nboot=1000):
 """Conduct bootstrap statistic estimation, including the estimate,
 standard error, and confidence interval

 Parameters

 samples : array (n,)
 1D array of samples
 statistic_func : function
 Function which summarizes an array
 theta = f(samples)
 Should have parameter `axis` where a specification of 0 allows
 row-wise operations.
 nboot : int
 Number of bootstrap samples
 """
 # Draw nboot independent samples from the available samples
 samples_star = choice(samples, size=(len(samples),nboot))
 # Evaluate the bootstrap replications
 theta_hat = statistic_func(samples_star, axis=0)
 # Analyze!
 # 1. Evaluate standard error, se(theta-hat)
 theta_hat_star_dot = (1 / nboot) * np.sum(theta_hat)
 se_boot = ((1 / (nboot - 1)) * np.sum(np.square(theta_hat - theta_hat_star_dot)))**(1/2)
 # 2. Visualize sampling distribution
 plt.hist(samples_star)
 plt.show()

 return theta_hat#, se_boot

bootstrap(rv, np.std, nboot=100), np.std(rv)

[image: ../_images/nblinks_bootstrapping_method_5_0.png]

[1]:

(array([2.86867496, 2.88168284, 2.85656279, 2.77987841, 2.79649334,
 2.88688742, 2.84963699, 2.88295525, 2.91062863, 2.81747334,
 2.75555512, 2.80896493, 2.83887848, 2.87435836, 2.85538018,
 2.86613049, 2.87053984, 2.85607405, 2.84638367, 2.7655146 ,
 2.86127786, 2.75861831, 2.80052209, 2.90598538, 2.80414532,
 2.90256163, 2.81842225, 2.85760022, 2.84664276, 2.86501588,
 2.90192764, 2.84693238, 2.8354497 , 2.84351895, 2.82310397,
 2.80290635, 2.81811551, 2.81093846, 2.87980277, 2.92732233,
 2.8045447 , 2.80905963, 2.82597081, 2.81381165, 2.87229368,
 2.85542834, 2.8085377 , 2.86195108, 2.84275641, 2.81444488,
 2.79069812, 2.86927848, 2.88667005, 2.83685671, 2.78057836,
 2.81962391, 2.81781405, 2.84771838, 2.8878073 , 2.8440378 ,
 2.79785614, 2.82006649, 2.86757302, 2.83340855, 2.81116897,
 2.82837745, 2.88809626, 2.86002517, 2.83975333, 2.89715654,
 2.90643407, 2.87158423, 2.79893122, 2.90363565, 2.81565552,
 2.83989014, 2.86079639, 2.84865565, 2.79015394, 2.90356746,
 2.9241067 , 2.89461414, 2.90805708, 2.83123136, 2.84886486,
 2.89318924, 2.85787264, 2.84606114, 2.83227806, 2.81826259,
 2.81108591, 2.84912899, 2.83526912, 2.86363336, 2.83154357,
 2.89542242, 2.85526251, 2.83532785, 2.7926645 , 2.78670397]),
 2.8452198509078346)

Bootstrap estimate of bias

Suppose we estimate the parameter \(\theta = t(F)\) by the statistic \(\hat{\theta} = s(\vec{x})\)

The bias of \(\hat{\theta}\) is defined as

\[bias(\hat{\theta}) = E(\hat{\theta}) - \theta\]

Recall: if \(bias(\hat{\theta}) = 0\), then \(E(\hat{\theta}) = \theta\), and \(\hat{\theta}\) is an unbiased estimator.

Example: Let \(\theta = \mu\), and \(\hat{\theta} = \bar{x}\).

\(E[\bar{x}] = \mu\), \(\bar{x}\) is an unbiased estimator for \(\mu\).

Substituting the empirical distribution \(\hat{F}_n\) for \(F\), the bootstrap estimate of the bias is

\[\hat{bias (\hat{\theta})} = bias^\star (\hat{\theta}^\star) = E^\star [\hat{\theta}^\star] - \hat{\theta} = \hat{\theta}^{\star (o)} - \hat{\theta}\]

Confidence Intervals

From the sampling distribution of \(\hat{\theta}\), we can construct CIs for \(\theta\)

Standard CI

Suppose that \(\hat{\theta}\) is approximately normally distributed with mean \(\theta\) and variance \(se(\hat{\theta})^2\).

An approximate \((1 - \alpha) 100 \%\) CI for \(\theta\) is \(\hat{\theta}_L = \hat{\theta} - Z_{\alpha/2} \hat{se}_{boot}(\hat{\theta})\) and \(\hat{\theta}_U = \hat{\theta} + Z_{\alpha/2} \hat{se}_{boot}(\hat{\theta})\), where \(Z_\alpha\) is the \(\alpha\) critical value of the standard normal.

Bootstrap t-interval

See function in Rizzo textbook - TODO: replicate it in python.

Suppose that \(\hat{\theta}\) is approximately normal distribution. Also, suppose that \(\hat{\sigma}_n\) is an estimate of the standard deviation of \(\hat{\theta}\). Therefore, \(\hat{\sigma}_n = \frac{s}{\sqrt{n}}\) in the normal mean problem. We can also use the delta theorem approximation for \(\hat{\sigma}_n\).

Let \(T = \frac{\hat{\theta} - \theta}{\hat{\sigma}_n}\) be the “t - statistic”.

We can also use the bootstrap appromimation of \(\hat{\sigma}_n\)!

From the bootstrap samples \(X^{\star (b)}\), we calculate \(T^{\star (b)} = \frac{\hat{\theta^{\star (b)}} - \theta}{\hat{\sigma}_n^\star}\) as the \(T\) counterpart.

Then the bootstrap + CI for \(\theta\) is given by \([\hat{\theta} + C^\star_{\alpha /2} \hat{\sigma}_n, \hat{\theta} + C^\star_{1 - \alpha /2} \hat{\sigma}_n]\) where \(C^\star_p\) is the 100 \(p\)th percentile of \(T^{\star (b)}\)

Bootstrap percentile interval

Let \(\hat{\theta}^{\star (1)}, \hat{\theta}^{\star (B)}\) be a bootstrap sample. Order the bootstrap replicates \(\hat{\theta}^\star_{(1)}, \hat{\theta}^\star_{(2)}, ..., \hat{\theta}^\star_{(B)}\). Let \(m = [\frac{\alpha}{2} \times B]\), where \([u]\) is the largest integer less than or equal to \(u\).

An approximation \((1 - \alpha) 100 \%\) CI for \(\theta\) is \((\hat{\theta}_{(m)}^\star, \hat{\theta}_{(B-m)}^\star)\).

Generally, we want \(B\geq 1000\)

This construction is simple and intuitive, but there are “better” methods

Takeaway: While the standard CI and bootstrap t-interval need normal distribution specifications, the bootstrap percentile interval does not.

Bias-corrected percentile interval (BCPI)

Correct the percentile interval by using the bias!

The CI should have equal probability to both sides of \(\hat{\theta}\), that is \(P(\hat{\theta} < \theta < \hat{\theta}_U) = P(\hat{\theta}_L < \theta < \hat{\theta})\) (Condition *).

Example: For \(\theta = \mu\), our \(\bar{x}\) is in the middle of the interval.

If \(\hat{\theta}\) is not the median of the bootstrap distribution, Condition * is not fulfilled.

The bias-corrected (BC) percentile interval is one approach to fix this issue.

The 2-sided \(100(1-\alpha)\%\) BCPI boils down to picking different quantiles of the bootstrap distribution of \(\hat{\theta}\).

Instead of using \([\zeta^\star_{\alpha/2}, \zeta^\star_{1 - \alpha/2}]\) where \(\zeta^\star_{p}\) is the 100 \(p\)th percentile in the bootstrap sample, use \([\zeta_{\beta_1}^\star, \zeta_{\beta_2}^\star]\) where \(\beta_1\) and \(\beta_2\) are quantities that depend on user-specified constants \((a,b)\). (Formulas for \(\beta_1\) and \(\beta_2\) are in Rizzo textbook along with discussion on choices)

Idea: does the above principle also apply to the \(C^\star_{\alpha/2}\) from Bootstrap t-interval?

Parametric bootstrap

\(\lambda\) : parameter

\(\theta\): statistic

Parametric bootstrap is a variation of the standard (non-parametric) bootstrap discussed previously. Suppose that we knwo that the distribution \(F\) belongs to a parametric family of distribution \(F_\lambda\) with densities \(p(x|\lambda)\). If \(\hat{\lambda}\) is an estimate of the true parameter \(\lambda\), an obvious estimate of \(F\) is the distribution \(F = F_{\hat{\lambda}}\) with density \(p(x|\hat{\lambda})\). In this case, we can still use the
bootstrapping method to obtain an estimate of the sampling distribution of \(\hat{\theta}\) (or any function of \(\hat{\theta}\): \(p(\hat{\theta})\)). The parametric bootstrap replaces sampling iid from \(\hat{F}_n\) (empirical distribution) with sampling iid from \(F_{\hat{\theta}}\).

Algorithm:

Step 1: Draw \(B\) independent bootstrap samples \(\vec{X}^{\star (1)}, ..., \vec{X}^{\star (B)}\) from \(F_{\hat{\lambda}}\)

Step 2: Evaluate bootstrap replications \(\hat{\theta}^{\star (b)} = s(\vec{X}^{\star (b)}), b = 1, ..., B\)

Step 3: Estimate the sampling distribution of \(\hat{\theta}\) by the empirical distribution of the bootstrap replications \(\hat{\theta}^{\star (1)}, ..., \hat{\theta}^{\star (B)}\)

This is potentially more complicated than nonparametric because sampling from \(F_{\hat{\lambda}}\) might be more difficult than sampling from \(\hat{F}_n\)

Question: Is \(\hat{F}_n\) or \(F_{\hat{\lambda}}\) better? Why?

Example: Assume a normal population \(N(\mu, \sigma^2)\) and \(H_0: \mu = 2\) vs. \(H_1: \mu \neq 2\).

If \(\sigma^2\) is unknown, we can use a \(t\)-statistic (but here, we try something else).

We can also use the likelihood ratio statistic \(\Lambda\). Get the sampling distribution of \(\Lambda\) when \(H_0\) is true. If \(H_0\) is true, \(\mu=2\) and we have now \(N(2, \sigma^2)\)

As a note, \(\lambda = \mu\) and \(\hat{\theta} = \Lambda\), according to the algorithm presented above

Want to use Monte Carlo simulation to get the sampling distribution of \(\Lambda\) when \(\mu = 2\). However, monte carlo hypothesis testing will not work here since we do not know \(\sigma^2\). So, an alternative method is to use parameteric bootstrap. Use \(s^2\) from the initial sample as an estimate of \(\sigma^2\). Sample from \(N(2, s^2)\), then compute \(\lambda\) and sampling distribution \(\hat{\Lambda}^{\star (1)}, ..., \hat{\Lambda}^{\star (B)}\).

Bootstrap Failures

Example: Let iid \(X_1, ..., X_n \sim Unif(0,\theta)\)

Consider statistic \(T_n = n(\theta - \hat{\theta}_n)\), where \(\hat{\theta} = X_{(n)} = \max X_i\).

Let the bootstrap stat \(T^\star_n = n(\hat{\theta}_n - \hat{\theta}^\star_n)\), where \(\hat{\theta}^\star_n = X^\star_{(n)}\)

Claim: The distribution of \(T^\star_n\) and \(T_n\) are not close when \(n \xrightarrow{} \infty\). Therefore, we do not have a consistent estimator.

Remedy: Surprisingly, one way to fix bootstrap failure is to take bootstrap samples of size \(m = o(n)\) (little o, not big-O) instead of size \(n\).

This is called “m-out-of-n bootstrap”, and is consistent in cases such as the \(unif(0, \theta)\) model. We use bootstrap samples of size \(m\) instead of \(n\). It is using sampling with replacement.

Intuition: https://stats.stackexchange.com/questions/476018/intuition-behind-m-out-of-n-bootstrap

Remarks

	The bootstrap is nonparametric but it does require some assumptions. You can’t always assume it is always valid.

	The bootstrap is an asymptotic method. It is very accurate when \(n \xrightarrow{} \infty\) (because each bootstrap samples use all data)

	There is related method called “Jacknife”. However, the bootstrap is valid under weaker conditions.

	There are many cases where the bootstrap is not formally justified. This is especially true with discrete structures like trees and graphs. It is an informal way to get some intuition on the variability of the procedure. But, keep in mind that the formal guarantees may not apply in these cases.

	There is a method related to the bootstrap called subsampling. In this case, we draw samples of size \(m < n\) without replacement (because without replacement, it is not the same as bootstrap). Subsampling produces valid CI under weaker conditions than the bootstrap.

[]:

 Inversion method

Inversion method

Probability integral transform is useful in statistics for checking goodness of fit of a distribution to a set of data while the inverse method is used for simulation.

1. Probability integral transfrom

🔴 For GOODNESS OF FIT 🔴

Data values that are modeled on being R.V. from any given distribution can be converted to a R.V. having uniform distribution. Let \(X \sim F_X(x)\) define a transformation where \(Y = F_X(X) \in [0,1]\). So, \(X = F_X^{-1}(y)\), then \(Y\) is uniform over \([0,1]\), i.e. \(Y \sim Unif(0,1)\).

This result can be summarized as:

Theorem: if X has CDF F, then F(x) has unif(0,1) distribution.

Proof:

\[F_y(y) = P(Y<=y) = P(F_x(x) <= y) = P(x <= F_x^{-1}(y)) = F_x(F_x^{-1}(y)) = y\]

So, \(F_y(y) = P(Y<=y) = y\), then \(Y \sim Unif(0,1)\).

2. Inverse probability integral transform

🔴 For SIMULATION OF R.V.🔴

Here, we start from \(Unif(0,1)\) and going to \(Y = F_X(x)\). This is helpful because it’s easy to get a \(Unif(0,1)\). From here, you can get a more complicated solution.

Start from the uniform distribution and do the inverse procedure

Theorem: suppose \(X \sim U(0,1)\), i.e. \(F_X(x) = x\), \(\forall x \in [0,1]\). Let \(Y = F^{-1}(x)\), then \(X = F(y)\), where \(F(\cdot)\) is a non-decreasing absolutely continuous function, then \(Y\) has the CDF corresponding to \(F\).

Proof:

Need to prove that \(F_Y(y) = F(y)\).

\[F_Y(y) = P(Y <= y) = P(F^{-1}(x) <= y) = P(x <= F(y)) = F(y)\]

Inversion method

Suppose we want to simulate \(X\) whose distribution has a given CDF, \(F\). If \(F\) is continuous and strictly increasing, then \(F^{-1}\) exists. Now, sampling \(U \sim Unif(0,1)\) and setting \(X = F^{-1}(u)\) does the job. This means that if \(X\) has CDF \(F\), then \(F^{-1}(u)\) will have CDF \(F\), so if you are able to calculate \(F^{-1}\), and can gather uniform, then you can generate a sample from \(F\).

Example 1: Generate a random sample of a distribution with \(F(x) = x / (1 + x)\).

To get F^{-1}(y), specify a value for y and solve for x.

\[y = x / (1 + x)\]

\[x = y / (1 - y)\]

So, \(F^{-1}(y) = y / (1 - y)\). This means that \(u / (1 - u)\) will have CDF \(F\). Therefore, the algorithm is:

	Generate uniform distribution, $ U :nbsphinx-math:`sim `Unif(0,1)$

	Set \(x = u / (1 - u)\)

	Conduct this multiple times to sample the distribution

[1]:

import numpy as np
import matplotlib.pyplot as plt

u = np.random.uniform(0, 1, 100000)

samples
samples = u / (1 - u)

plt.hist(samples)
plt.show()

[image: ../_images/nblinks_inversion_method_1_0.png]

Example 2: Generate random sample of exponential distribution with rate \(\lambda\)

We know \(f(x) = \lambda \exp (-\lambda x)\) where \(x \geq 0\). Therefore, \(F(x) = 1 - \exp(-\lambda x)\).

To calculate $F^{-1}(y), specify a value for \(y\) and solve for \(x\).

\[y = 1 - \exp(- \lambda x)\]

\[x = \frac{-1}{\lambda} \log (1 - y)\]

Therefore, \(x = F^{-1}(y) = - \frac{1}{\lambda} \log (1 - y)\).

This means that if \(U \in [0,1]\), then \(F^{-1}(U) = -\frac{1}{\lambda} \log (1 - U) \sim Exp(\lambda)\)

To generate samples,

	Sample \(U \sim Unif(0,1)\)

	Set \(x = -\frac{1}{\lambda} \log(1 - u)\)

[7]:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import expon

u = np.random.uniform(0, 1, 1000000)

lambd = 2

samples
samples =- (1 / lambd) * np.log(1 - u)

x = np.linspace(0,4,100)
plt.hist(samples, bins=30, density=True)
plt.plot(x, expon.pdf(x, scale=1/lambd))
plt.show()

[image: ../_images/nblinks_inversion_method_3_0.png]

Example 3: Generate random sample of the (standard) normal distribution

We know \(f(x) = \frac{1}{\sqrt{2\pi}} \exp(- \frac{x^2}{2})\), where \(-\infty < x < \infty\)

The CDF \(F(x)\) does not have a closed form.

\[\Phi (x) = \int_{-\int}^x \frac{1}{\sqrt{2\pi}} \exp(- \frac{x^2}{2}) dx\]

In many cases, you cannot invert the CDF (i.e. normal distribution, t-distribution)

A normal R.V. can, in principle, can be generated using the inversion method. However, this requires evaluations of the standard normal inverse CDF, which is a non-trivial calculation. There are ways [https://stats.stackexchange.com/questions/16334/how-to-sample-from-a-normal-distribution-with-known-mean-and-variance-using-a-co] of sampling this distribution.

3. Transformation Methods

This is the case where distribution \(F\) is linked in a simple way to another distribution easy to simulate.

Sampling normal RVs

There are a number of fast and efficient alternatives for generating normal RVs.

Box-Muller algorithm

Box-Muller is based on some trigonometric transformations.

[3]:

from utils import disp
disp('box-muller.png')

[image: ../_images/nblinks_inversion_method_6_0.png]

This method generates a pair of normal RVs \(X\) and \(Y\). Let \(X \sim N(0,1)\) and \(Y \sim N(0,1)\) be independent. Box-Muller sampling is based on representing the joint distribution of 2 independent standard normal variables in polar coordinates. The joint distribtion \(p(x,y)\) which is circular-symmetric is

\[p(x,y) = p(x) \times p(y) = (\frac{1}{\sqrt{2\pi}} \exp(-\frac{x^2}{2}))(\frac{1}{\sqrt{2\pi}} \exp (-\frac{y^2}{2}))\]

\[= \frac{1}{2\pi} \exp(- (x^2 + y^2) / 2) = \frac{1}{2\pi} \exp (-r^2 / 2)\]

where \(r^2 = x^2 + y^2\). Therefore,

\[p(r, \theta) = \frac{1}{2\pi} \exp (-r^2 / 2)\]

is the joint density of \(r^2 \sim \chi_2^2\) (or \(\exp(1/2)\)) and \(\theta \sim Unif(0, 2\pi)\).

This is because: \(x^2 \sim \chi_1^2\), \(y^2 \sim \chi_1^2\), x and y are independent. Therefore, \(x^2 + y^2 \sim \chi_2^2\)

It follows that normal RVs can be generated from \(\chi^2\) and uniform.

If \(X \sim N(0,1)\), \(Y \sim N(0,1)\) and independent, then

\[X^2 + Y^2 = -2 \log{ U_1} \sim \chi_2^2\]

where \(U_1 \sim Unif(0,1)\).

\(- \log {x}\) comes from the inverse of the exponential distribution.

Question: Given that \(x^2 + y^2 = -2 \log{U_1}\), how do we find X and Y?

Define \(\theta\) as a random angle between \(X\) and \(r\) where \(r^2 = x^2 + y^2\). Then, \(\theta \sim Unif(0, 2\pi)\).

[4]:

disp('box_muller_coordinates.png')

[image: ../_images/nblinks_inversion_method_8_0.png]

\[x = r \cos \theta = \sqrt{ -2 \log U_1 } \cos (2\pi U_2)\]

\[y = r \sin \theta = \sqrt{ -2 \log U_1 } \sin (2\pi U_2)\]

where \(U_2 = \frac{\theta}{2\pi} \sim Unif(0,1)\) because as we stated above, \(\theta \sim Unif(0, 2\pi)\).

Justification: Let \(x^2 + y^2 = -2 \log U_1\). Therefore, \(u_1 = \exp (-\frac{x^2+y^2}{2})\).

\[\tan (2\pi U_2) = Y / X\]

\[U_2 = \frac{1}{2\pi} tan^{-1} (Y/X)\]

The Jacobian of the polar transformation is

\[| \frac{\delta (u_1, u_2)}{\delta{x,y}}| = \frac{1}{2\pi} \exp { - \frac{x^2 + y^2}{2}}\]

By the formulat for the random vairable transformation, we have

\[f(x,y) = f(u_1, u_2) | \frac{\delta (u_1, u_2)}{\delta{x,y}}| = \frac{1}{2\pi} \exp {-\frac{1}{2} (x^2 + y^2)}\]

Hence, \(X\) and \(Y\) are independent N(0,1).

**We want to generate a random normal sample. To do this, we simply **

	Sample \(U \sim Unif(0,1)\) and \(V \sim Unif(0,1)\)

	Set \(x = r \cos \theta = \sqrt{ -2 \log U } \cos (2\pi V)\) and \(x = r \cos \theta = \sqrt{ -2 \log U } \sin (2\pi V)\)

	Take a linear function to get different mean and variance (\(\mu\), \(\sigma\))

[11]:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

u = np.random.uniform(0,1,1000000)
v = np.random.uniform(0,1,1000000)

samples = np.sqrt(-2 * np.log(u)) * np.cos(2 * np.pi * v)

x = np.linspace(-4,4,100)
plt.hist(samples, bins=60, density=True)
plt.plot(x, norm.pdf(x))
plt.show()

[image: ../_images/nblinks_inversion_method_10_0.png]

To get a normal distribution, simply evaluate \(x = \mu + z \sigma \sim N(\mu, \sigma)\).

Several other useful transformation identities exist!

Chi-squared

If \(x_1, x_2, ..., x_k \sim N(0,1)\) independent, then \(\sum_{i=1}^k X_i^2 \sim \chi_k^2\)

Gamma

If \(x_1, x_2, ..., x_k \sim exp(\lambda)\) independent, then \(\sum_{i=1}^k X_i \sim Gamma(k, \lambda)\)

Reminder: we can get exponential by going from uniform to exponential and can get gamma by summing exponentials

Beta

If \(X_1 \sim Gamm(\alpha, \lambda)\) and \(X_2 \sim Gamm(\beta, \lambda)\) independent, then \(\frac{X_1}{X_1 + X_2} \sim Beta(\alpha, \beta)\)

t

If \(Z\sim N(0,1)\) and \(Y\sim \chi_\nu^2\) independent, then \(X = \frac{Z}{\sqrt{Y / \nu}} \sim t_\nu\)

F

If \(X\sim t_{(df)}\) then \(X^2 \sim F(1, df)\)

Indirect Sampling techniques

Sample from a different distribution to generate samples from a target distribution. For example, a laplace (or double exponential) distribution can be used to approximate the normal distribution.

Majorization

Suppose we want to sample from a distribution with PDF \(f\). Suppose, further, that \(f(u) \leq h(u) = M g(u), \forall u\) where \(M\) is a constant > 1 and \(g(u)\) is a (simple) pdf. By simple, we mean it’s a pdf which is able to be defined easily (i.e. exponential)

We say that \(h(u)\) majorizes \(f(u)\).

The goal is to use samples from the (easy to generate) pdf \(g(u)\) as “approximate samples” from \(f(u)\). But it is clear that unless \(g(u) \approx f(u), \forall u\), there will be samples from \(g\) that are not representative of \(f\). The idea is to throw away these “bad” samples using the accept-reject algorithm (A.R. algo.). Rejection algorithm is a general algorithm to generate samples from a distribution with density \(f\) (called the target denstiy) based
only on the ability to generate from another distribution with density \(g\) (usually referred to as the proposal density) s.t.

\[sup_x \frac{f(x)}{g(x)} \leq M < \infty\]

The basic algorithm is A.R. algorithm.

Step 1: Generate \(Y \sim g\) as proposal.

Step 2: Generate \(U \sim Unif(0,1)\).

Step 3: If \(U \leq \frac{f(Y)}{M g(Y)}\), set \(X = Y\) (aka use as a sample). Otherwise, return to step 1 (aka reject sample).

We are not generating anything from \(X\). Everything is from \(Y\). Our proposal \(g\) is easier to sample than \(f\).

IMPORTANT: \(g\) must have the same support as \(f\).

Theorem: (Part 1) The random variable generated by the A.R. algorithm has density \(f\). (Part 2) The number of iterations in the A.R. algorithm follows a geometric distribution with mean \(M\).

Proof: (Part 2) The unconditoinal probability of acceptance is

\[P(acc) = \sum_x P(acc | X=x) P(X=x)\]

by the law of conditional probability

\[= \sum_x P(U\leq \frac{f(x)}{M g(x)} | X = x) P(X = x)\]

\[= \sum_x \frac{f(x)}{M g(x)} g(x) = \sum_x \frac{f(u)}{M} = \frac{1}{M} \sum_x f(u) = \frac{1}{M}\]

Therefore, the probability to accept is \(\frac{1}{M}\).

Now, let $N = $ number of iterations in algorithm to set a value of \(X\),

\[P(N = n) = \frac{1}{M} (1 - \frac{1}{M})^{n-1}, n = 1, 2, ...\]

This is the probability of \(n\) iterations. This is a geometric distribution with mean \(M\).

i- Want to show that hte distribution of accepted ddraws is the same as the target distribution

\[P(X = u | acc) = \frac{P(X=u, acc)}{P(acc)}\]

\[= \frac{P(acc |X = x) \times P(X=x)}{P(acc)} = \frac{P(acc | X=u) \times g(x)}{1 / M}\]

\[= \frac{f(u)}{M g(u)} \times M g(u) = f(u)\]

Since the acceptance rate is \(\frac{1}{M}\), you will need, on average, to generate \(M \times n\) draws from the proposal distribution \(g\) and from the uniform distribution to get \(n\) draws from the target distribution \(f\).

It pays to find a sharp bound for \(M\)

\[M = max_{u} \frac{f(u)}{g(u)}\]

This can be solved by taking derivative and then solve for zero.

Example Simulate normal RVs from double exponential RVs.

Consider generating a \(N(0,1)\) by using a double exponential distribution with density \(g(x|\alpha) = \frac{\alpha}{2} \exp (-\alpha |x|), \alpha > 0\), as proposal distribution.

Solution \(g\) is the double exponential. \(f\) is the normal pdf.

In order to use the A.R. algorithm, we need to find the value of \(M\).

Step 1: Let \(h(x) = \frac{f(x)}{g(x)}\), then M = max_x h(x)$.

\[h(x) = [\frac{1}{\sqrt{2\pi}} \exp (- \frac{x^2}{2})] [\frac{2}{\alpha} \exp (\alpha |x|)]\]

\[= \frac{\sqrt{2}}{\alpha \sqrt{\pi}} \exp (- \frac{x^2}{2} + \alpha |x|)\]

Step 2: Differentiate h, after taking \(\log\) to simplify wrt x to find the maximum while ignoring the constants in front.

\[\ln h(x) = - \frac{x^2}{2} + \alpha |x|\]

\(\frac{d}{dx} \ln h(x) = -x + \alpha\) and \(\frac{d}{dx} \ln h(x) = -x - \alpha\)

Set equal to zero. We get \(x = \pm \alpha\)

Step 3: To get the maximum, we plug this back into equation of \(M\).

\[M = \frac{2}{\alpha \sqrt{2\pi}} \exp (-\frac{\alpha^2}{2} + \alpha^2) = \frac{2}{\alpha \sqrt{2\pi}} \exp (\frac{\alpha^2}{2})\]

\[= \frac{2}{\sqrt{2\pi}} \alpha^{-1} \exp (\frac{\alpha^2}{2})\]

Which depends on \(\alpha\). So,

Step 4: Minimize the differentiating wrt \(\alpha\) to obtain the smallest \(M\).

\[\frac{d}{d \alpha} (\ln (\frac{1}{\alpha} \exp(\frac{\alpha^2}{2}))) = 0\]

Therefore, \(\alpha = \pm 1\)

But since \(\alpha >0\), we choose \(\alpha = 1\).

Step 5: Insert \(\alpha=1\) into the equation of \(M\) given

\[M = \sqrt{\frac{2}{\pi}} \exp(\frac{1}{2}) = \sqrt{\frac{2 e}{\pi}} \approx 1.32\]

This is the minimum value. We can use numbers higher than this. However, the higher you go, the more values you’ll have in sampling process.

We know that the probability of acceptance is exactly \(\frac{1}{M}\). Therefore, \(P(acc) = \frac{1}{M} = \sqrt{\frac{\pi}{2 e}} \approx 0.76\)

Algorithm: Normal from double exponential

Step 1: Generate \(Y \sim double exp(1)\) (use inversion process above - start with uniform - find CDF of double exponential - inverse the x and y (=F(x)) variables - solve for x (piecewise))

Step 2: Generate \(U \sim Unif(0,1)\)

Step 3: If \(U < \frac{f(y)}{M g(y)}\), accept \(X = Y\). \(g\) is the double exponentail and \(f\) is the normal.

Step 4: Otherwise return to step 1

[1]:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm, laplace

M = 1.32
nsamples = 10000
alpha = 1

norm_mean = 3
norm_sigma = np.sqrt(2)

Get a double exponential
u = np.random.uniform(0, 1, nsamples)
double exponential is from (-inf, inf)
y = np.where(u > 0.5, -np.log(2*(1-u)), np.log(2*u))

hx = np.sqrt(2) / (alpha * np.sqrt(np.pi)) \
 * np.exp(-(y**2 / 2) + alpha * np.abs(y)) \
 * (1 / M)

U = np.random.uniform(0,1,nsamples)
accept_mask = U < hx

samples = norm_mean + norm_sigma*y[accept_mask]

x = np.linspace(-4,8,100)
plt.hist(samples,bins=50,density=True)
plt.plot(x,norm.pdf(x,norm_mean,norm_sigma))
plt.show()

[image: ../_images/nblinks_inversion_method_12_0.png]

Sampling a discrete distribution

A discrete RV \(X\) in a RV that has a probability mass function (pmf).

\[p(x) = P(X=x) \forall x \in S\]

where \(S = \{ x_1, x_2, ..., x_k \}\) denotes the sample space and \(k\) is the (possibly infinite) number of possible outcomes for the discrete variable \(X\).

Suppose that \(S\) is ordered from smaller ot larger values. The CDF of \(F\) is \(F(x_j) = \sum_{i \leq j} p(x_i)\)

Discrete RV can be generated by slicing up the interval (0,1) into subintervals which define a partition of (0,1):

\[[(0, F(x_1)), (F(x_1), F(x_2)), (F(x_2), F(x_3)), ..., F((x_{k-1}), 1)]\]

Generating \(U \sim unif(0,1)\) and seeing which subintervals \(U\) falls into.

Set \(I_j = \Iota (U \in F(x_{j-1}), F(x_j)) = \begin{cases} 1 & if U \in (F(x_{j-1}), F(x_j))\\ 0 & otherwise\\ \end{cases}\)

\[P(I_j = 1) P(F(x_{j-1}) \leq U \leq F(x_j)) = F(x_j) - F(x_{j-1}) = p(x_j) = P(X = x_j)\]

where \(F(x_0)\) is defiend to be 0. This means that the probability that \(I_j = 1\) is the same as the probability that \(X = x_j\). This can be used to generate from the distribution sf \(x\).

Example: S = {1, 2, 3 }$ with pmf defined by

\[\begin{split}\begin{matrix}
\mathbf{x} & 1 & 2 & 3\\
\mathbf{p(x)} & p_1 & p_2 & p_3\\
\end{matrix}\end{split}\]

To generate this distribution, we partition (0,1) into 3 subintervals \((0, p_1), (p_1, p_1 + p_2), (p_1 + p_2, p_1 + p_2 + p_3)\). Here, \(p_1\) is \(F(x_1)\) and \(p_1 + p_2\) is \(F(x_2)\), and \(p_1 + p_2 + p_3 = 1\) at the end of the CDF.

Our task: generate a \(unif(0,1)\) and check which interval \(U\) falls into (out of the 3 subintervals above).

Assume that \(p_1 = 0.4\), \(p_2 = 0.25\), and \(p_3 = 0.35\).

Therefore, the subintervals are (0, 0.4), (0.4, 0.65), and (0.65, 1).

Algorithm: sample a discrete distribution

Step 1: Generate \(U \sim Unif(0,1)\)

Step 2: Deliver 1 if \(0 < U \leq 0.4\). Deliver 2 if \(0.4 < U \leq 0.65\). Deliver 3 if \(0.65 < U \leq 1\).

[10]:

import numpy as np

nsamples = 100000

u = np.random.uniform(0,1, nsamples)

ones = sum((u > 0) & (u <= 0.4))
twos = sum((u > 0.4) & (u <= 0.65))
threes = sum((u > 0.65) & (u <= 1))

np.array([ones, twos, threes]) / nsamples

[10]:

array([0.39855, 0.25019, 0.35126])

 Jackknife

Jackknife

The jackknife was proposed by M.H. Quenouille in 1949, and later refined and given its current name by John Tukey in 1956. It is similar to the bootstrap in that it involves resampling, but instead of sampling with replacement, the method samples without replacement.

Procedure

Definition: The jackknife samples are computed by leaving out one observation \(X_i\) from \(\vec{x} = (x_1, ..., x_n)\) at a time:

A jackknife sample looks like

\[\vec{x}_{(i)} = (x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n)\]

The dimension of a jackknife sample is \(m = n-1\). There are \(n\) unique different jackknife samples (which is probably a limitation).

Notice: No sampling is needed to compute the :math:`n` jackknife samples!

The \(i\)th Jackknife replicate \(\hat{\theta}_{(i)}\) is defined as the value of the estimator or statistic \(s(.)\) evaluated at the \(i\)th Jackknife sample

\[\hat{\theta}_{(i)} = s(\vec{X}_{(i)}), \forall i = 1, ..., n.\]

Example: Let \(\vec{X} = (1,5,7,10,12)^\prime\) and define \(\hat{\theta} = s(\vec{X}) = \bar{X}\) (sample mean).

Step 1: The jackknife samples are

\(\vec{X}_{(1)} = (5,7,10,12)^\prime\)

\(\vec{X}_{(2)} = (3,7,10,12)^\prime\)

\(\vec{X}_{(3)} = (3,5,10,12)^\prime\)

\(\vec{X}_{(4)} = (3,5,7,12)^\prime\)

\(\vec{X}_{(5)} = (3,5,7,10)^\prime\)

Notice: \(n\) samples are generated, each of size \(m=n-1\).

The 5 Jackknife replicates are:

\(\hat{\theta}_{(1)} = \frac{5+7+10+12}{4}\)

\(\hat{\theta}_{(2)} = \frac{3+7+10+12}{4}\)

\(\hat{\theta}_{(3)} = \frac{3+5+10+12}{4}\)

\(\hat{\theta}_{(4)} = \frac{3+5+7+12}{4}\)

\(\hat{\theta}_{(5)} = \frac{3+5+7+10}{4}\)

Standard error estimate

Step 1: Compute the \(n\) jackknife samples (see above)

Step 2: Evlauate the \(n\) Jackknife replications (see above)

Step 3: Evaluate standard error estimate as \(se_{jack} = [\frac{n-1}{n} \sum(\hat{\theta}_{(.)} - \hat{\theta}_{(i)})^2]^{1/2}\)

where \(\hat{\theta}_{(.)} = \frac{1}{n} \sum_{i=1}^n \hat{\theta}_{(i)}\)

Bias estimate

Step 1: Compute the \(n\) jackknife samples (see above)

Step 2: Evlauate the \(n\) Jackknife replications (see above)

Step 3: Jackknife bias estimate is \(bias_{jack} = (n-1) (\hat{\theta}_{.} - \hat{\theta})\) where \(\hat{\theta}_{(.)} = \frac{1}{n} \sum_{i=1}^n \hat{\theta}_{(i)}\)

[1]:

import copy
import numpy as np

x = [3,5,7,10,12]
n = len(x)

replications = []
for i in range(len(x)):
 xi = copy.copy(x)
 # Remove current index's sample
 xi.pop(i)
 replication_i = sum(xi) / len(xi)
 replications.append(replication_i)

stat0 = np.mean(x)
replications = np.array(replications)
theta_dot = (1./n) * np.sum(replications)
var = ((n-1) / n) * np.sum((theta_dot - replications)**2)
se = np.sqrt(var)
bias = (n-1) * (theta_dot - stat0)

#print("Using python plugins", "variance:", np.var(replications), "std", np.std(replications))
"Standard error of jackknife:", se, "bias", bias

[1]:

('Standard error of jackknife:', 1.6309506430300091, 'bias', 0.0)

Relationship with bootstrap

When \(n\) is small, it is easier (faster) to compute the n-Jackknife replications. However, the Jackknife uses less information (less samples) than the bootstrap. In fact, the jackknife is an approximator to the bootstrap.

Failure of the Jackknife

The jackknife can faile if the estimate \(\hat{\theta}\) is not smooth (i.e. a small change in the data can cause a large change in the statistic). An example of a simple non-smooth statistic is the median.

Example: \(\vec{X} = (10,27,31,40,46,50,52,104,146)^\prime\)

[15]:

import copy
import numpy as np

x = [10,27,31,40,46,50,52,104,146]
n = len(x)

replications = []
for i in range(len(x)):
 xi = copy.copy(x)
 # Remove current index's sample
 xi.pop(i)
 replication_i = np.median(xi)
 replications.append(replication_i)

print(replications)
replications = np.array(replications)
theta_dot = (1./n) * np.sum(replications)
var = ((n-1) / n) * np.sum((theta_dot - replications)**2)
se = np.sqrt(var)
bias = (n-1) * (theta_dot - replications)

#print("Using python plugins", "variance:", np.var(replications), "std", np.std(replications))
"Standard error of jackknife:", se, "bias", bias

[48.0, 48.0, 48.0, 48.0, 45.0, 43.0, 43.0, 43.0, 43.0]

[15]:

('Standard error of jackknife:',
 6.681465057054626,
 'bias',
 array([-20.44444444, -20.44444444, -20.44444444, -20.44444444,
 3.55555556, 19.55555556, 19.55555556, 19.55555556,
 19.55555556]))

There are many duplicates in the replications. This maps down nine statistics down to three, caused by the nonsmooth statistic. The jackknife is not a good estimation method for estimating percentiles (such as the median), or when using any other non-smooth estimator.

To resolve this issue, the method called Delete-d jackknife was created.

Delete-d Jackknife

The delete-d jackknife subsamples are computed by leaving out \(d\) observations from \(\vec{X}\) at a time. This is the essence of cross validation!

The dimension of the subsample is \(n-d\). The number of possible subsamples now rises to \(\begin{pmatrix}n\\d\\\end{pmatrix}\)

Algorithm

Step 1: Compute all \(\begin{pmatrix}n\\d\\\end{pmatrix}\) d-jackknife subsamples from \(\vec{x}\).

Step 2: Evaluate the jackknife replications \(\hat{\theta}_{(i)} = s(\vec{x}_{(i)})\)

Step 3: Estimation of the s.e. (where \(n=rd\), where \(r\) is a constant)

\[\begin{split}\hat{se}_{d-jack} = \{ \frac{r}{\begin{pmatrix}n\\d\\\end{pmatrix}} \sum_i (\hat{\theta}_{(i)} - \hat{\theta}_{.})^2 \}^{1/2}\end{split}\]

where \(\hat{\theta}_{.} = \frac{\sum_i \theta_{(i)}}{\begin{pmatrix}n\\d\\\end{pmatrix}}\)

The inconsistency of the jackknife subsamples with non-smooth statistics can be fixed using delete-d jackknife subsamples.

 Markov Chain Monte Carlo

Markov Chain Monte Carlo

Used when you do not have independence in samples. The markov property looks at the most previous sample to help inform the next sample!

This is a stochastic process. Other processes like this are q-theory, brownian motion, and poisson process.

Monte carlo uses these simulated R.V.s to approximate integrals, etc. but the R.V. don’t need to be independent in order to approximate integrals. MCMC constructs a dependent sequence of RV that can be used to approximate the integrals like the ordinary MC. The advantages of introducing this dependence is that very general “black box” algorithms (and corresponding theory) are available to perform the required simulations. This page will discuss some basics of Markov chains and MCMC but know that
there are very important unanswered questions about how and when MCMC works.

Definition

A markov chain is just a sequence of R.V. \(\{ x_1, x_2, ... \}\) with a specific type of dependence structure. In particular, a Markov chain satisfies

\[P(X_{n+1} \in B | X_1, ..., X_{n-1}, X_n) = P(X_{n+1} \in B | X_n)\]

where \(X_{n+1}\) is the cuture, \(X_1, ..., X_{n-1}\) is the past, and \(X_n\) is the present. Therefore, this property states that the future is only dependent on the present. This is called the markov property.

Independence is a trivial Markov Chain.

From the markov property, we can argue that the probabilistic properties of the chain are completely determined by

	initial distribution for \(X_0\)

	the transition distribution, i.e. distribution of \(X_{n+1}\) given \(X_n\)

Note: Assume that the markov chain is homogeneous (aka, the transition distribution does not depend on \(n\)).

Example: simple random walk Let \(v_1, v_2, ...\) be iid \(\sim Unif(-1,1)\)

Set \(x_0 = 0\) and \(X_n = \sum_{i=1}^n U_i = X_{n-1} + U_n\). The initial distribution is \(P(X_0 = 0) = 1\). The transition distribution is determined by

\[\begin{split}x_n = \begin{cases}
x_{n-1}-1 & prob.= 1/2\\
x_{n-1}+1 & prob.= 1/2\\
\end{cases}\end{split}\]

While very simple, the random walk is an important example in probability theory, having connections to advanced things like Brownian Motion. In some conditions, random walk becomes brownian motion.

[2]:

import numpy as np

Task: predict next number

Sample set 1:
X = np.array([0,1,2,3,4,5,6,7,8,9]*100 + [3])

lag=1

total_count_dict = {}
dependent_count_dict = {}
for i in range(len(X)-lag):

 if X[i] not in total_count_dict:
 total_count_dict[X[i]] = 0
 total_count_dict[X[i]] += 1

 if X[i] not in dependent_count_dict:
 dependent_count_dict[X[i]] = {}
 if X[i+lag] not in dependent_count_dict[X[i]]:
 dependent_count_dict[X[i]][X[i+lag]] = 0
 dependent_count_dict[X[i]][X[i+lag]] += 1

Normalize each value in dependent_count_dict by total_count_dict
for k,d in dependent_count_dict.items():
 for key in d.keys():
 d[key] /= total_count_dict[k]

print("Transition Matrix:")
dependent_count_dict

Transition Matrix:

[2]:

{0: {1: 1.0},
 1: {2: 1.0},
 2: {3: 1.0},
 3: {4: 1.0},
 4: {5: 1.0},
 5: {6: 1.0},
 6: {7: 1.0},
 7: {8: 1.0},
 8: {9: 1.0},
 9: {0: 0.99, 3: 0.01}}

Brownian Motion

Multiple plays - i.e. Gambler’s ruin problem.

Discrete time Markov Chain (DTMC)

\(P(X_{n+1}=j | X_n = i, X_{n-1}, ..., X_1, X_0) = P(X_{n+1}=j|X_n=i)\)

(Markov property for DTMC)

If we have a homogeneous MC, then \(P(X_{n+1}=j | X_n =i) = p_{ij} = P(X_1 = j|X_0 = i) = P(X_2=j | X_1 = i) = P(X_3=j|X_2=i) = ...\)

We can put the \(P_{ij}\) in a matrix over the state space \(S = \{ 1, 2, ..., m \}\) into a transition matrix:

\[\begin{split}P = \begin{bmatrix}
p_{11} & p_{12} & ... & p_{1m}\\
p_{21} & p_{22} & ... & p_{2m}\\
\vdots &&&\\
p_{m1} & p_{m2} & ... & p_{mm}\\
\end{bmatrix}\end{split}\]

To describe completely a DTMC, we need \(X_0\) (the initial state) and \(P\) (transition probabilities).

Example: Two-state DTMC

\(S = \{ 1, 2 \}\) and \(P = \begin{bmatrix} \alpha&1-\alpha\\ 1-\beta&\beta\\ \end{bmatrix}\)

where \(0 < \alpha\) and \(\beta < 1\)

\(p_{11} = \alpha = P(X_1=1 | X_0 = 1)\)

The probability \(P(X_1 = j | X_0 = i) = P_{ij} = P(X_2 = j | X_1 = i) = P(X_3 = j | X_2 = i) = ... = P(X_{n+1} = j | X_n = i)\) due to time-homogeneous property (if applies). Also, this \(P_{ij}\) is a 1-step transition probability.

\(P(X_2 = j | X_0 = i) = P_{ij}^{(2)}\) is a 2-step transition probability.

\(P(X_n = j | X_0 = i) = P_{ij}^{(n)}\) is an n-step transition probability.

\[\begin{split}P^{(n)} = \begin{bmatrix}
p_{11}^{(n)} & p_{12}^{(n)} & ... & p_{1m}^{(n)}\\
\vdots & & & \\
p_{m1}^{(n)} & p_{m2}^{(n)} & ... & p_{mm}^{(n)}\\
\end{bmatrix}\end{split}\]

is the n-step transition probability matrix.

Question: What is \(\lim_{n\xrightarrow{} \infty} P^{(n)}\) (limiting distribution)?

For \(i, j\), what is \(\lim_{n \xrightarrow{} \infty} p_{ij}^{(n)}\), \(\forall i,j\)?

What is \(\lim_{n \xrightarrow{} \infty} P(X_n = j | X_0 = i)\)?

Under some conditions, the DTMC \(\{ X_n, n\geq 0 \}\) has a stationary distribution \(\Pi\). For the 2-state DTMC example,

\[\Pi = (\pi_1, \pi_2) = (P(X_n=1), P(X_n=2))\]

\(P(X_n = j), \forall j \in S\). So, it will converge to some PMF.

Moreover, under some conditions, the stationary distribution \(\Pi\) can also be the limiting distribution. We can use the same idea to construct a stationary distribution \(f\) (in continuous case). \(X_0\) and kernel transition.

In statistical computing, this kernel transition is an algorithm.

Properties

A state \(i\) is recurrent if a chain starting in \(i\) will eventually return to \(i\) with probability 1. If probability less than one, then it is transient. Also, the state is positive recurrent if the expected time to return is finite.

A markov chain is irreducible if there is a positive probability that a chain starting in a state \(i\) can reach any state \(j\).

A markov chain is aperiodic if, for a starting state \(i\), there is no constraint on the time at which the chain can return to state \(i\).

An irreducible, aperiodic Markov chain with all states being positive recurrent is called ergodic.

Limit Theory

\(f\) is a stationary distribution if \(X_0 \sim f\) up to \(X_n \sim f\) for all \(n\). An irreducible and positive recurrent markov chain has at most one stationary distribution. Furthermore, if the chain is ergodic, \(\lim_{n\xrightarrow{} \infty} P(X_{m+n} \in B | X_m \in A) = \int_B f(x) dx\) for all \(A\), \(B\), \(m\). Even further, if \(\phi(x)\) is integrable, then \(\frac{1}{n} \sum_{t=1}^n \phi(X_t) \xrightarrow{} \int \phi(x) f(x) dx\) with
probability 1. This is a version of the famous ergodic theorem. It is effectively the law of large numbers for the markov chain.

Motivation: Why MCMC?

In monte carlo applications, we want to generate random variables with distribution \(f\). This could be difficult or impossible to do exactly (for example, if have dependent RVs).

The markov chain monte carlo (MCMC) is designed to construct an ergodic monte carlo with \(f\) as its stationary distribution.

Asymptotically, the chain will resemble samples from \(f\). In particular, by the ergodic theorem, expectations wrt \(f\) can be approximated by averages. Somewhat surprising is that it is quite easy to construct and simulate a suitable MC, explaining why MCMC methods have become so popular. But, of course, there are practical and theoretical challenges.

For instance, how do you choose a starting value? Also, the _. Also, when stop (i.e. when converge)?

Metropolis-Hastings Algorithm (MH)

Let \(f(x)\) denote the target distribution pdf. Let \(q(x|y)\) denote a conditional pdf for \(x\) given \(Y=y\) (proposal distribution). This (proposal) pdf should be easy to sample from.

Given \(X_0\), the MH algorithm produces a sequence of RVs as follows:

	Sample \(X^\star_t \sim q(X|X_{t-1})\)

	Compute \(R = \min \{ 1, \frac{f(x^\star_t) q(x_{t0-} | x^\star_t)}{f(x_{t-1})q(x_t^\star | x_{t-1})} \}\)

	Set \(X_t = X_t^\star\) with probability \(R\); otherwise, \(X_t = X_{t-1}\).

As a note: This is different from accept-reject sampling because there is always a sample which is selected in each iteration (as one difference).

The proposal distribution is not easy to choose, and the performance of the algorithm depends on this choice. Two general strategies are:

Strategies for selecting a proposal distribution for MH:

Strategy 1: Take the proposal \(q(x|y) = q(x)\), i.e. at each stage of the MH algorithm, \(x_t^\star\) does not depend on \(x_{t-1}\).

Strategy 2: Take \(q(x|y) = q_0(x-y)\) for a symmetric distribution with pdf \(q_0\), which amounts to a random walk proposal.

This is one aspect of the MCMC implementation that requires a lot of care from the user. Deeper understanding is needed to really see how the proposal affects the performance. Assuming the proposal is not too bad, then a number of things can be shown about the sequence \(\{ x_t, t\geq 1 \}\).

	the chain is ergodic, and

	the target \(f\) is the stationary distribution

In summary, we want a sample from \(f(x)\). We use MH to get a sample from \(f\). Providing the proposal \(q\) is not too bad, we can prove that MH renders a sequence which is ergodic, and can say that \(f\) is the stationary distribution of the markov chain (meaning the MH is working)!

TODO: prove MH result!

Consequently, the sequence converges to the stationary distribution and for any integrable function \(\phi(x)\) we can approximate (using Limit Theory) integrals with sample averages.

The markov chain gives sample \(f\) and the monte carlo step allows you to approximate the integral.

So, provided that we run the simulation “long enough”, we should be able to get arbitrarily good approximations.

Example: The Rayleigh density is

\[f(x) = \frac{x}{\sigma^2} e^{- \frac{x^2}{2 \sigma^2}}\]

where \(x \geq 0\) and \(\sigma > 0\)

Use the chi-squared distribution with df \(x_t\) as the proposal distribution (\(q\)). The MH algorithm for the Rayleigh distribution is as follows:

Step 1: Set \(q(.|y)\) to the density of \(\chi^2_{(y)}\).

Step 2: Generate \(X_0\) from distribution \(\chi^2_{(1)}\) and store in \(X[1]\) (or in python, \(X[0]\)).

Step 3: Repeat for \(i=2, ..., N\): For each,

Step 3a: Generate \(X_t^\star\) from \(\chi^2_{(X_t)}\) where the sample is \(\chi^2(df=X[i-1])\)

Step 3b: Generate \(U\) from \(unif(0,1)\).

Step 3c: With \(X_t = X[i-1]\), compute \(r(x^\star_t, x_{t-1}) = \frac{f(x^\star_t) q(x_{t0-} | x^\star_t)}{f(x_{t-1})q(x_t^\star | x_{t-1})}\)

If \(U \leq r(x^\star_t, x_{t-1})\), set \(x_t = x^\star_t\); otherwise, set \(x_t = x_{t-1}\).

Step 3d: Increment t

Gibbs Sampler

Suppose we have a multivariate target distribution \(f\). MH can be applied to such a problem, but there are challenges in constructing a good proposal over multiple dimensions.

Idea: Sample one dimension at a time!

Question: How to carry out the sampling so that it will approximate the target at least in a limit?

Answer: Gibb’s sampler!

Suppose we have a trivariate target \(f(x_1, x_2, x_3)\). Suppose we can write down the set of full conditional \(f(x_1|x_2,x_3)\), \(f(x_2|x_1,x_3)\), and \(f(x_3|x_1,x_2)\) and that these can be sampled from.

Gibbs sampler generates a sequence \(\{ x^{(t)}, t\geq 0\}\) by iteratively sampling from the conditionals

\[x_1^{(t)} \sim f(x_1 | x_2^{(t-1)}, x_3^{(t-1)})\]

\[x_2^{(t)} \sim f(x_2 | x_1^{(t)}, x_3^{(t-1)})\]

\[x_3^{(t)} \sim f(x_3 | x_1^{(t)}, x_2^{(t)})\]

Let’s say you have \(X_1^{(0)}\), \(X_{2}^{(0)}\), \(X_3^{(0)}\)

\[X_1^{(1)} \sim f(x_1 | x_2^{(0)}, x_3^{(0)})\]

\[X_2^{(1)} \sim f(x_2 | x_1^{(1)}, x_3^{(0)})\]

\[X_3^{(1)} \sim f(x_3 | x_1^{(1)}, x_2^{(1)})\]

Example: Bivariate normal

A super simple Gibbs example is the bivariate normal distribution. Suppose \(\vec{x} = (x_1, x_2)\) is a bivariate normal with correlation \(\rho\).

Full conditionals are easy to write down (for normals)

\(E[X_2 | X_1] = \mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1)\)

^ Notice, this is linear regression! \(x_2 = a x_1 + b\)

\(Var(X_2 | X_1) = (1 - \rho)^2 \sigma_2^2\)

\(X_1 | X_2 \sim N(\mu_1 + \rho \frac{\sigma_2}{\sigma_1} (x_2 - \mu_2), (1 - \rho)^2 \sigma_1^2)\)

\(X_2 | X_1 \sim N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1 - \mu_1), (1 - \rho)^2 \sigma_2^2)\)

Gibb’s sampler

\(x_1^{(t)} \sim N(\mu_1 + \rho \frac{\sigma_2}{\sigma_1} (x_2^{(t-1)} - \mu_2), (1 - \rho)^2 \sigma_1^2)\)

\(x_2^{(t)} \sim N(\mu_2 + \rho \frac{\sigma_2}{\sigma_1} (x_1^{(t)} - \mu_1), (1 - \rho)^2 \sigma_2^2)\)

Not as efficient as direct sampling (e.g. accept-reject), but works fine.

Let’s say you have a certain target distribution \(f\) but you are not able to get a closed form of the condition (as shown above). Here, we can just use monte carlo.

Some MCMC diagnostics

Usually, the first ~5000 samples consist of the burn-in period; these should be discarded. It is good to build a sample path plot or trace plot, which reveals any residual dependency after burn-in (which is something we want to see!). The idea is that a sample path of iid samples should show no trend. So, if there is minimal trend in our sample path, then we can be comfortable treating samples as independent. Additionally, an autocorrelation plot will plot sample correlations of
\(\{ (x_t, x_{t-r}), t = 1, 2, ... \}\) as a function of lag \(r\). We want to see the autocorrelation plot decaying rapidly, suggesting that the dependence along the chain is not too strong.

If these plots indicate that the chain has not yet converged to stationarity, then you can run the chain longer or make some modifications (e.g. transformations, “thinning”=skipping samples, etc.). The practical/theoretical rate of convergence can depend on the parameterization. There is no agreement in the stat community about how many chains to run, how long should it run, how long should the burn-in, etc. Charles Geyer (Univ. of Minnesota) strongly supports running only one long chain. Gelman
and Rubin suggest running several shorter chains with different starting points.

Conclusion

MCMC methods are powerful because they give fairly general procedures able to solve a variety of important problems. There are “black-box” software implementations.

i- the mcmc package in R will do random-walk MH

ii- in SAS, PROC MCMC does similar things

iii- BUGS (“Bayes Using Gibbs Sampler”)

Remember to look at convergence diagnostics before the simulation results be used for inference. Our focus here was on relatively simple MCMC methods. Don’t think that MH, Gibbs, etc. are separate methods. They can be combined. For example, if one of the full conditionals is difficult to sample from, one might consider a MH step within Gibbs to sample this conditional (could also use Accept-Reject).

Book by Robert and Casella has some details about more advanced MCMC methods, including various combinations of these standard techniques.

 Monte Carlo Integration

Monte Carlo Integration

Ref: Chapter 6, Rizzo

Basic Monte Carlo Integration

Sampling and integartion are important techniques of statistical inference problems. But, often, the target distributions are too complicated and/or the integrands are too complex or high dimensional for these problems to be solved using basic methods.

Let \(p(x)\) be a pdf defined on a sample space \(X\). Let \(h\) be a function mapping \(X\) to \(\mathbf{R}\).

The goal is to estimate \(E[h(X)]\). Normally this is an integral computed by hand (\(\mu_p(h) = E[h(x)] = \int h(x) p(x) dx\)). However, we assume that this case is too complicated to solve that way. It depends on the structure of \(h\) and \(p\) which can be very difficult to calculate.

In general, we will only assume that \(\mu_p (|h|) < \infty\). In other words, we assume a finite first moment.

The monte carlo method (MCM) is based on 2 of the most important results in probability theory:

	Central limit theorem, CLT (\(X_n \xrightarrow{} N(\mu, \sigma)\) as \(n \xrightarrow{} \infty\))

	Law of large numbers, LLN (\(\bar{x}_n \xrightarrow{} E [x]\) as \(n \xrightarrow{} \infty\))

The monte carlo method appeals to the LLN and estimates $ E[h(X)]$ by the sample mean of \(h(x)\):

\[\bar{h(x)} = \frac{1}{N} \sum_{i=1}^N h(X_i)\]

and \(X_1, X_2, ...\) are iid with pdf \(p\). This is simply the average.

Recall LLN ensures that \(\bar{h(x)} \xrightarrow{} E [h(x)]\) as \(N \xrightarrow{} \infty\)

We can generate RV from \(p\) using inverse method (see Inverse methods page). This will generate a set of values \(h(x_i)\). With these, we can estimate

\(\bar{h(x)} = \frac{h(x_1) + h(x_2) + ... + h(x_n)}{N}\)

by the LLN. If the estimate is bad, we need a larger \(N\).

The confidence inteval can be defined for \(E[h(x)]\) by appealing to the CLT. The sample variance of \(\bar{h(x)}\) is

\[Var(\bar{h(x)}) = \frac{\hat{Var}(h(x))}{N} = \frac{1}{N^2} \sum_{i=1}^N (h(x_i) - \bar{h(x)})^2\]

Because (for instance) if \(X \sim (\mu, \sigma^2)\), \(E[\bar{x}] = \mu\) and \(Var(\bar{x}) = \frac{\sigma^2}{n}\).

The CLT tells us that the approximate distribution of \(\bar{h(x)}\) is approximately normal ($ N(E(h(x)), \frac{var(h(x))}{N})$)

Therefore, the (\(1 - \alpha\)) CI for \(E[h(x)]\) is approximately

\[\bar{h(x)} \pm z_{\alpha/2} \sqrt{\frac{\hat{Var}(h(x))}{N}}\]

Example: Estimate \(E[h(x)] = \int_{-\infty}^\infty \frac{1}{1 + \exp (-x)} \frac{1}{\sqrt{ (2\pi) (1.43)}} \exp (\frac{-(x - 1.5)^2}{2.86}) dx\) and give a 95% CI for \(E[h(x)]\).

Using \(\int h(x) p(x) dx\)

Note that \(h(x) = \frac{1}{1 + e^{-x}}\) and is the inverse of the logit function.

\[p(x) = \frac{1}{\sqrt{(2\pi)(1.43)}} \exp (\frac{-(x - 1.5)^2}{2.36})\]

is the pdf of the \(N(1.5, 1.43)\). To estimate this integral,

Step 1: Generate \(Z_1, Z_2, ..., Z_{n} \sim N(1.5, 1.43)\) where \(n\) is just a large number, say 10000.

Step 2: Calculate \(\hat{I} = \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + e^{-Z_i}}\) as \(n \xrightarrow{} \infty\), \(\hat{I} \xrightarrow{} E[h(x)]\)

[38]:

import numpy as np
from scipy.integrate import quad

n = 1000000

We can also estimate this using base numpy. See `inversion methods` page.
g = np.random.normal(1.5,np.sqrt(1.43),n)

def gaussian_pdf(x, mu=0, sigm=1):
 return (1 / np.sqrt(2 * np.pi * sigm**2)) * np.exp(-1 * (x - mu)**2 / (2 * sigm**2))
def h(x):
 return 1 / (1 + np.exp(-x))
def p(x):
 sigm = np.sqrt(1.43)
 mu = 1.5
 return gaussian_pdf(x, mu, sigm)

integral = (1 / n) * np.sum(h(g))
print("Integral:", integral)

variance = (1./n) * np.sum((h(g) - integral)**2)
print("Variance:", variance)

ci = (integral - 1.96 * np.sqrt(variance / n), integral + 1.96 * np.sqrt(variance / n))
print("CI:", ci)

def f(x):
 return h(x)*p(x)

estimated_integral, abs_error = quad(f,-np.inf,np.inf)
print("Estimated integral: ", estimated_integral)

Integral: 0.7657685757433373
Variance: 0.03383417980157237
var: 0.03383417980157237
CI: (0.7654080519783429, 0.7661290995083317)
Estimated integral: 0.7657308432059984

<ipython-input-38-069b21f38f26>:12: RuntimeWarning: overflow encountered in exp
 return 1 / (1 + np.exp(-x))

For the 95% CI for \(E[h(X)]\), we will need an estimate of the variance. The corresponding variance is

\[Var(\hat{I}) = \frac{1}{n} \sum_{i=1}^n (\frac{1}{1 + e^{-Z_i}} - \hat{I})^2\]

So, the 95% CI for \(E[h(x)]\) is \(\hat{I} \mp 1.96 \sqrt{\frac{Var(\hat{I})}{n}}\)

Calculating arbitrary integrals

This is a special case also known as “sample mean”. or “crude” method.

To calculate more general integrals, we generate a random variable from [a,b] and find summation.

\[\int_a^b h(x) dx = \int_a^b \frac{h(x)p(x)}{p(x)} dx = \int_a^b f(x) p(x) dx\]

where \(f(x) = \frac{h(x)}{p(x)}\). This re-writes the integral as an expectation against some density \(f\), generates from that density, and looks at the sample mean as before.

For definite integrals over a finite interval, the uniform distribution will suffice (but you may not get a good accuracy).

To calculate \(I = \int_a^b h(x)dx\), we can proceed as

\[I = \int_a^b h(x) dx = (b-a)\int_a^b h(x) \frac{1}{b-a}dx = (b-a)\int_a^b h(x) f_{unif}(a,b)dx\]

Example: Estimate \(\theta = \int_0^2 e^{-x^2} dx\)

\(\theta\) can be rewritten as

\[\theta = (2 - 0) \int_0^2 e^{-x^2} \frac{1}{2 - 0} dx = 2 \int_0^2 e^{-x^2} \frac{1}{2} dx\]

Step 1: Sample \(U_1, ... U_n \sim Unif(0,2)\)

Step 2: Estimate \(\theta\) by \(\hat{\theta} = \frac{2}{n} \sum_{i=1}^n e^{-U_i^2}\)

[5]:

import numpy as np
n = 1000
u = np.random.uniform(0,2,n)

theta = (2/n) * np.sum(np.exp(-1 * u**2))
theta

[5]:

0.8659644587536548

Example Estimate \(\theta = \int_0^{2\pi} \sin(x \cos(x)) dx\)

\[\theta = (2\pi - 0) \int_0^{2\pi} \sin(x \cos(x)) \frac{1}{2\pi - 0} dx = 2\pi \int_0^{2\pi} \sin(x \cos(x)) \frac{1}{2 \pi} dx\]

Step 1: Generate \(unif(0, 2 \pi)\)

Step 2: Build \(\frac{2\pi}{n} \sum_{i=1}^n sin(U_i cos(U_i))\)

[19]:

import numpy as np
n = 1000000
u = np.random.uniform(0,2*np.pi,n)
theta = (2*np.pi/n) * np.sum(np.sin(u * np.cos(u)))
theta

[19]:

-1.0438478105216198

Example: What about \(\int_{-\infty}^\infty \sin(x \cos(x))dx\)?

Here, the uniform approx won’t work because we cannot depend on an evaluation of \(b - a\).

The way to solve this is discussed below.

Infinite integrals

Use any distribution defined on the real line and do a similar approximation. So, rewrite the integral as

\[\int_{-\infty}^{\infty} h(x) dx = \int_{-\infty}^{\infty} \frac{h(x) p(x)}{p(x)} dx\]

where \(p(x)\) is the pdf of a distribution defined over \(\mathbf{R}\), and \(h\) in any function.

Then, generate \(X_i\) from \(p(x)\) and estimate the integral \(\int_{-\infty}^\infty h(x) dx\) by using

\[\frac{1}{n} \sum_{i=1}^n \frac{h(x_i)}{p(x_i)}\]

per the problem earlier.

Example Back to the problem from earlier: compute \(\int_{-\infty}^\infty \sin(x \cos(x))dx\)?

The standard normal is supported over \(\mathbf{R}\). So, use the standard normal pdf for the estimation.

Step 1: Generate \(X_1, ..., X_n \sim N(0,1)\)

Step 2: Calcualte the average, \(\frac{1}{n} \sum_{i=1}^n \frac{\sin (x_i \cos(x_i))}{\phi(x_i)}\)

where \(\phi(.)\) is the pdf of the standard normal.

[37]:

import numpy as np

n=1000
g = np.random.normal(0,1,n)

def gaussian_pdf(x):
 sigm = 1
 mu = 0
 return (1 / np.sqrt(2 * np.pi * sigm**2)) * np.exp(-1 * (x - mu)**2 / (2 * sigm**2))

(1./n) * np.sum(np.sin(g * np.cos(g)) / gaussian_pdf(g))

[37]:

0.07370648126811634

Higher-dimensional integrals

Monte carlo methods become particularly attractive when we consider integration in higher dimensions

\[I = \int_0^1 \int_0^1 \int_0^1 f(x, y, z) dx dy dz\]

\(I\) can be estimated by

\(\hat{I} = \frac{1}{n} \sum_{i=1}^n f(x_i, y_i, z_i)\) where \((x_i, y_i, z_i)\) is a random sequence of points in the unit cube \([0, 1] \times [0, 1] \times [0, 1]\). For example, \(X_i \sim Unif(0,1), Y_i \sim Unif(0,1), Z_i \sim Unif(0,1)\).

In total, we need \(3 n\) random numbers in order to generate the \(N\) random points.

Example: \(I = \int_0^1 \int_0^1 x y \exp (- x^2 y) dx dy\)

Here, \(f(x,y) = x y \exp (- x^2 y)\). So,

\[\hat{I} = \frac{1}{n} \sum_{i=1}^n x_i y_i \exp (- x_i^2 y_i)\]

[24]:

import numpy as np

n = 100000
u = np.random.uniform(0,1,n)
u2 = np.random.uniform(0,1,n)

approx = (1 / n) * np.sum(u * u2 * np.exp(- u * u2**2))
real = 1 / (2 * np.e)

approx, real

[24]:

(0.18458428310422237, 0.18393972058572117)

Recall that the exact value of \(I\) is \(I = \frac{1}{2e}\) We see a close approximation.

In general to estimate a triple integral, for example

\[I = \int_{a_1}^{a_2} \int_{b_1}^{b_2} \int_{c_1}^{c_2} f(x,y,z) dx dy dz\]

we can use

\[\hat{I} = (a_2 - a_1)(b_2 - b_1)(c_2 - c_1) \frac{1}{N} \sum_{i=1}^N f(x_i, y_i, z_i)\]

where \(X_i \sim Unif(a_1, a_2)\), \(Y_i \sim Unif(b_1, b_2)\) and \(Z_i \sim Unif(c_1, c_2)\)

Importance sampling

We’ve seen how to estimate the integral. If want a better result in estimation, you can always generate more samples. But, an alternative is to

Variance reduction techniques. This reduces the variance of your estimators. Within this, a few techniques exist:

	Control variates

	antithetic variables

	importance sampling

Importance sampling is used for variance reduction, but it can also be used for other things. Importance sampling is useful

	in case where another distribution gives a better for to the integral we want to approximate.

	in cases when we want to evaluate \(E(X)\) but cannot generate from the distribution of \(X\).

The logic underlying importance sampling lies in a simple arrangement of terms. The target integral

\[\int h(x) p(x) dx = \int h(x) \frac{p(x)}{g(x)} g(x) dx\]

\[= \int h(x) w(x) g(x) dx\]

where \(g(x)\) is another pdf whose supports is the same as the \(p(x)\). We do this because we do not know how to sample from \(p(x)\), but we know how to sample from \(g(x)\).

Specifically, \(w(x) = \frac{p(x)}{g(x)}\) is the importance function.

Example: Want to calculate \(\int_0^{10} \exp(-2|x-5|) dx\)

The function \(h(x) = \exp (-2 |x-5|)\) is peaked at 5 and decays quickly elsewhere. So, we can use something like the Gaussian function with a peak at 5 and small variance, say 1.

This would provide a greater precision.

\(\int_0^{10} \exp(-2|x-5|) dx = \int_0^{10} 10 \exp(-2|x-5|) \frac{\frac{1}{10}}{\frac{1}{\sqrt{2\pi}} \exp (-\frac{(x-5)^2}{2})} \frac{1}{\sqrt{2\pi}} \exp (- \frac{(x-5)^2}{2}) dx\)

Here, \(h(x) = \exp (-2 |x-5|)\), \(p(x) = \frac{1}{10}\), and \(g(x) = \frac{1}{\sqrt{2\pi}} \exp (- \frac{(x-5)^2}{2})\).

We use the normal distribution because it follows the shape of our original \(h(x)\).

So, \(E[h(x) w(x)]\) where \(X \sim N(5, 1)\) and \(w(x) = \frac{\sqrt{2\pi} \exp (\frac{(x-5)^2}{2})}{10}\) is the importance function.

Remarks:

	The choice of the envelope function \(g\) is important, and may require trial and error.

	In particular, the importance function \(w(x) = \frac{p(x)}{g(x)}\) must be well-behaved; otherwise, the variance of the estimate could be too large.

[82]:

import numpy as np
from scipy.stats import cosine, logistic, beta, cauchy, lognorm, norm, uniform, laplace
import matplotlib.pyplot as plt
font = {'family' : 'normal',
 'weight' : 'normal',
 'size' : 22}
import matplotlib
matplotlib.rc('font', **font)

Old method
n = 1000000
def h(x):
 return np.exp(-2*np.abs(x-5))
u = np.random.uniform(0,10,n)
vals = 10 * h(u)
val = np.mean(vals)
var = (1/n) * np.sum((vals - np.mean(vals))**2)
print('Using basic monte carlo: ', 'theta', val, 'var', var)

xx = np.linspace(-1,11,num=int(12/0.001))
plt.figure(figsize=(8, 5))
plt.plot(xx, h(xx), label='h(x)')
plt.plot(xx, uniform.pdf(xx, 0, 10), label='Unif(0,10)')
plt.legend()
plt.xlabel("x")
plt.title(f"Integral: {round(val, 3)}, Variance: {round(var, 4)}")
plt.show()

mu = 5
sigm = 1
def p(x):
 return 1./10.
def w(x, distribution):
 return p(x)/distribution.pdf(x, mu, sigm)

def experiment(gval, pdf_class, part_num='2', *pdf_aargs):
 val = 10 * h(gval) * w(gval, pdf_class)

 i = 1/n * np.sum(val)
 var = (1/n) * np.sum((val - np.mean(val))**2)
 print(f'Part {part_num}: ', 'theta', i, 'var', var)

 xx = np.linspace(1,9,num=int(10/0.001))
 plt.figure(figsize=(8, 5))
 plt.plot(xx, h(xx), label='h(x)')
 plt.plot(xx, pdf_class.pdf(xx, *pdf_aargs), label=part_num)
 plt.legend()
 plt.xlabel("x")
 plt.title(f"Integral: {round(i, 3)}, Variance: {round(var, 4)}")
 plt.show()

Part 2
gval = np.random.normal(5,1,n)
experiment(gval, norm, 'Norm(5,1)', 5,1)

Part 3
gval = np.random.normal(5,0.7,n)
experiment(gval, norm, 'Norm(5,0.7)', 5,0.7)

gval = laplace.rvs(loc=5, scale=1, size=n)
experiment(gval, laplace, 'Laplace(5,1)', 5,1)

gval = np.random.logistic(5,1,n)
experiment(gval, logistic, '3. Logistic', 5,1)

gval = cauchy.rvs(loc=5, scale=1, size=n)
experiment(gval, cauchy, '3. Cauchy', 5,1)

gval = np.random.lognormal(5,1,n)
experiment(gval, lognorm, '3. Lognorm', 5,1)

Using basic monte carlo: theta 0.9969382906038302 var 3.98383924464083

[image: ../_images/nblinks_monte_carlo_integration_method_16_1.png]

Part Norm(5,1): theta 0.9995606909027704 var 0.3584292745710712

[image: ../_images/nblinks_monte_carlo_integration_method_16_3.png]

Part Norm(5,0.7): theta 1.1978977026372482 var 0.3509316263547209

[image: ../_images/nblinks_monte_carlo_integration_method_16_5.png]

Part Laplace(5,1): theta 0.9996766472905633 var 0.33365928102100023

[image: ../_images/nblinks_monte_carlo_integration_method_16_7.png]

Part 3. Logistic: theta 1.0007510795448502 var 1.0685859278976755

[image: ../_images/nblinks_monte_carlo_integration_method_16_9.png]

Part 3. Cauchy: theta 1.0004597582913806 var 0.7679373506213807

[image: ../_images/nblinks_monte_carlo_integration_method_16_11.png]

Part 3. Lognorm: theta inf var nan

<ipython-input-82-676b8e2e1740>:55: RuntimeWarning: divide by zero encountered in true_divide
 return p(x)/distribution.pdf(x, mu, sigm)
<ipython-input-82-676b8e2e1740>:61: RuntimeWarning: invalid value encountered in subtract
 var = (1/n) * np.sum((val - np.mean(val))**2)

[image: ../_images/nblinks_monte_carlo_integration_method_16_14.png]

[32]:

import math

import numpy as np
import math
import random
from matplotlib import pyplot as plt
from IPython.display import clear_output

PI = 3.1415926
e = 2.71828

def f_of_x(x):
 """
 This is the main function we want to integrate over.
 Args:
 - x (float) : input to function; must be in radians
 Return:
 - output of function f(x) (float)
 """
 return (e**(-1*x))/(1+(x-1)**2)

def get_rand_number(min_value, max_value):
 """
 This function gets a random number from a uniform distribution between
 the two input values [min_value, max_value] inclusively
 Args:
 - min_value (float)
 - max_value (float)
 Return:
 - Random number between this range (float)
 """
 range = max_value - min_value
 choice = random.uniform(0,1)
 return min_value + range*choice

def crude_monte_carlo(num_samples=5000):
 """
 This function performs the Crude Monte Carlo for our
 specific function f(x) on the range x=0 to x=5.
 Notice that this bound is sufficient because f(x)
 approaches 0 at around PI.
 Args:
 - num_samples (float) : number of samples
 Return:
 - Crude Monte Carlo estimation (float)

 """
 lower_bound = 0
 upper_bound = 5

 sum_of_samples = 0
 for i in range(num_samples):
 x = get_rand_number(lower_bound, upper_bound)
 sum_of_samples += f_of_x(x)

 return (upper_bound - lower_bound) * float(sum_of_samples/num_samples)

def get_crude_MC_variance(num_samples):
 """
 This function returns the variance fo the Crude Monte Carlo.
 Note that the inputed number of samples does not neccissarily
 need to correspond to number of samples used in the Monte
 Carlo Simulation.
 Args:
 - num_samples (int)
 Return:
 - Variance for Crude Monte Carlo approximation of f(x) (float)
 """
 int_max = 5 # this is the max of our integration range

 # get the average of squares
 running_total = 0
 for i in range(num_samples):
 x = get_rand_number(0, int_max)
 running_total += f_of_x(x)**2
 sum_of_sqs = running_total*int_max / num_samples

 # get square of average
 running_total = 0
 for i in range(num_samples):
 x = get_rand_number(0, int_max)
 running_total = f_of_x(x)
 sq_ave = (int_max*running_total/num_samples)**2

 return sum_of_sqs - sq_ave

xs = [float(i/50) for i in range(int(50*PI*2))]
ys = [f_of_x(x) for x in xs]
plt.plot(xs,ys)
plt.title("f(x)")
plt.show()

this is the template of our weight function g(x)
def g_of_x(x, A, lamda):
 e = 2.71828
 return A*math.pow(e, -1*lamda*x)

def inverse_G_of_r(r, lamda):
 return (-1 * math.log(float(r)))/lamda

def get_IS_variance(lamda, num_samples):
 """
 This function calculates the variance if a Monte Carlo
 using importance sampling.
 Args:
 - lamda (float) : lamdba value of g(x) being tested
 Return:
 - Variance
 """
 A = lamda
 int_max = 5

 # get sum of squares
 running_total = 0
 for i in range(num_samples):
 x = get_rand_number(0, int_max)
 running_total += (f_of_x(x)/g_of_x(x, A, lamda))**2

 sum_of_sqs = running_total / num_samples

 # get squared average
 running_total = 0
 for i in range(num_samples):
 x = get_rand_number(0, int_max)
 running_total += f_of_x(x)/g_of_x(x, A, lamda)
 sq_ave = (running_total/num_samples)**2

 return sum_of_sqs - sq_ave

get variance as a function of lambda by testing many
different lambdas

test_lamdas = [i*0.05 for i in range(1, 61)]
variances = []

for i, lamda in enumerate(test_lamdas):
 print(f"lambda {i+1}/{len(test_lamdas)}: {lamda}")
 A = lamda
 variances.append(get_IS_variance(lamda, 10000))
 clear_output(wait=True)

optimal_lamda = test_lamdas[np.argmin(np.asarray(variances))]
IS_variance = variances[np.argmin(np.asarray(variances))]

print(f"Optimal Lambda: {optimal_lamda}")
print(f"Optimal Variance: {IS_variance}")
print(f"Error: {(IS_variance/10000)**0.5}")

def importance_sampling_MC(lamda, num_samples):
 A = lamda

 running_total = 0
 for i in range(num_samples):
 r = get_rand_number(0,1)
 running_total += f_of_x(inverse_G_of_r(r, lamda=lamda))/g_of_x(inverse_G_of_r(r, lamda=lamda), A, lamda)
 approximation = float(running_total/num_samples)
 return approximation

run simulation
num_samples = 10000
approx = importance_sampling_MC(optimal_lamda, num_samples)
variance = get_IS_variance(optimal_lamda, num_samples)
error = (variance/num_samples)**0.5

display results
print(f"Importance Sampling Approximation: {approx}")
print(f"Variance: {variance}")
print(f"Error: {error}")

Optimal Lambda: 1.55
Optimal Variance: 0.046564028098271204
Error: 0.002157869970555946
Importance Sampling Approximation: 0.6959351198340756
Variance: 0.053959820884172394
Error: 0.002322925329927167

Final conclusions

	Advantage of M.C.: does not depend on the dimension of the R.V. Basically works for all function \(h(x)\).

	Disadvantage of M.C.: can be slow. Need to be able to sample from target distribution \(f(x)\) (or \(p(x)\)). Error bounds are not tight as for numerical integration.

 Revisiting Basic Neural Network

Revisiting Basic Neural Network

A feedforward ReLU neural network \(\mathcal{N}\) with input \(n\), output width \(m\) and depth \(k\) consists of

	A sequence of integer widths \(n=d_1, d_2, \dots, d_{k+1} = m\),

	A sequence of affine functions \(\{ A_i : \mathbb{R}^{d_i} \xrightarrow{} \mathbb{R}^{d_{i+1}}\}_{i=1}^k\),

Associated to every ReLU net \(\mathcal{N}\) is a continuous function

\[f_{\mathcal{N}} : \mathbb{R}^n \xrightarrow{} \mathbb{R}^m ,\]

\[f_{\mathcal{N}} = A_k \circ ReLU \circ \dots \circ ReLU \circ A_1\]

where the rectified linear unit (ReLU) is the function

\[\hbox{ReLU}: \mathbb{R}^d \xrightarrow{} \mathbb{R}^d,\]

\[(x_1, \dots, x_d) \xrightarrow{} (\max \{ x_1, 0\}, \dots, \max \{ x_d, 0 \})\]

NN is a function approximator

Theorem (Stone-Weierstrass). If \(K \subseteq \mathbb{R}^n\) is compact, \(f : K \xrightarrow{} \mathbb{R}^m\) is continuous and \(\epsilon > 0\), there exists a polynomial function \(g : \mathbb{R}^n \xrightarrow{} \mathbb{R}^m\) such that

\[\sup_{x \in K} || f(x) - g(x) || < \epsilon\]

Theorem (Hanin-Sellke ‘17). If \(K \subseteq \mathbb{R}^n\) is compact, \(f : K \xrightarrow{} \mathbb{R}^m\) is continuous and \(\epsilon > 0\), there exists a ReLU net \(\mathcal{N}\) with widths bounded above by \(m + n\) such that

\[\sup_{x \in K} ||f(x) - f_{\mathcal{N}}(x)|| < \epsilon\]

This is achievable with depth \(O(diam(K) / w_f^{-1}(\epsilon))^{n+1}\).

\[w_f^{-1}(\epsilon) = \sup \{ \delta > 0 \hbox{ } | \hbox{ } ||x-y|| \leq \delta \Rightarrow ||f(x) - f(y)|| \leq \epsilon \}\]

Examples

ReLU net \(\mathcal{N} = \bigl\{ A_i : \mathbb{R}^{d_i} \xrightarrow{} \mathbb{R}^{d_{i+1}} \bigr\}_{i=1}^k \in \Pi_{i=1}^k M_{d_{i+1}, d_i} (\mathbb{R}) \times \Pi_{i=1}^k \mathbb{R}^{d_{i+1}}\)

\[f_{\mathcal{N}} : \mathbb{R}^n \xrightarrow{} \mathbb{R}^m,\]

\[f_{\mathcal{N}} = A_k \circ ReLU \circ \dots \circ ReLU \circ A_1\]

Simple

\(n=2, m=1, k=2, d_2 = 1\)

[1]:

from utils import disp
disp('relu_nn_simple.drawio.png')

[image: ../_images/nblinks_revisiting_basic_nns_1_0.png]

 Root finding and optimization

Root finding and optimization

Introduction

In statistical applications, point estimation problems often boil down to maximize a function according to:

	maximize likelihood

	least squares

	maximum of a posterior distribution (i.e. bayesian)

When the function to be optimized is “smooth”, we can reformulate optimization into a root finding problem.

Trouble: these problems often have no analytical solution.

General setup

We will discuss 2 kinds of problems

	Root finding: solve \(f(x) = 0\) for \(x \in \mathbf{R}^d\), \(d \geq 1\)

	Optimization: maximize \(g(x)\) for \(x \in \mathbf{R}^d\), \(d \geq 1\)

We will address univariate and multivariate problems cases separately. We will look at methods that construct a sequence \(\{ x_t : t \geq 0 \}\) designed to converge (as \(t \xrightarrow{} \infty\)) to the solution, denoted by \(x^\star\).

Theoretical considerations

	Under what conditions on \(f\) (or \(g\)) and initial guess \(x_0\) can we prove that \(x_t \xrightarrow{} x^\star\)?

	If \(x_t \xrightarrow{} x^\star\), then how fast, i.e. what is its convergence order?

Practical consideration

	How to write and implement the algorithm?

	Can’t run the algorithm till \(t = \infty\), so how to stop?

Univariate problems

Bisection (root-finding)

	Find unique root \(x^\star\) of \(f\) in an interval \([a, b]\)

	\(f(a)f(b) \leq 0\) means a root exists between \(a\) and \(b\) (by the intermediate value theorem).

Pick an initial guess \(x_0 = \frac{a + b}{2}\).

\(x^\star\) must be in either \([a, x_0]\) or \([x_0, b]\)

Evaluate \(f(x)\) at the end points to determine which one. The selected interval, call it \([a_1, b_1]\), is now just like the initial interval. Take \(x_1 = \frac{a_1 + b_1}{2}\). Continue this process to construct a sequence \(\{ x_t : t \geq 0 \}\).

Algorithm

Assume \(f(x)\) and the interval \([a, b]\) are given.

	Set \(x = \frac{a+b}{2}\)

	If \(f(a)f(b) \leq 0\), then \(b=x\), else \(a=x\).

	If “converged”, then stop; otherwise, return to step 1.

The convergence criteria is usually something like \(| x_{new} - x_{old} | < \epsilon\) where \(\epsilon\) is a specified small number (e.g. \(\epsilon = 10^{-8}\)). A relative convergence riteria might be better \(\frac{|x_{new} - x_{old}|}{x_{old}} < \epsilon\).

As a reminder, the limit of a sequence is defined by: \(\forall \epsilon > 0, \ni N > 0\) s.t. \(|U_N - l| < \epsilon\) where \(N \xrightarrow{} \infty\) is the number of items in the sequence and \(l\) is the value the sequence approaches.

Theorem: If \(f\) is continuous, then \(x_t \xrightarrow{} x^\star\).

Time complexity: \(\log n\)

[3]:

from utils import disp
disp('bisection_method.png')

[image: ../_images/nblinks_root_finding_methods_2_0.png]

Newton’s method (Newton-Raphson)

Basic idea

Newton’s method approximates a nonlinear function, which near its root by a linear function, can be solved by hand It is based on Taylor’s theorem, which gives the linear approximation of a function \(f(x)\) in a neighborhood of some point \(x_0\) as

\[f(x) \approx f(x_0) + f^\prime(x_0) (x - x_0)\]

We can set this equal to 0 to solve for \(x\)

\[x = x_0 - \frac{f(x_0)}{f^\prime(x_0)}\]

Algorithm - for root finding

Assume the function \(f(x)\), its derivative \(f^\prime(x)\), and an initial guess are given.

	Set \(t=0\)

	Calculate \(x_{t+1} = x_t - \frac{f(x_t)}{f^\prime(x_t)}\)

	If the convergence criteria is met, then stop; otherwise, set \(t \xleftarrow{} t+1\) and return to step 1.

Warnings

Convergence depends on choice of \(x_0\) and on \(f\)

Unlike bisection, Newton might not converge.

Newton method theory

Theorem: If \(f^{\prime\prime}\) is continuous and \(x^\star\) is a root of \(f\), with \(f^\prime(x_0) \neq 0\), then there exists a neighborhood \(N\) of \(x^\star\) s.t. Newton’s method converges to \(x^\star\) for any \(x_0 \in N\).

The proof uses taylor’s approximation. Proof also shows that the convergence order is quadratic.

If Newton converges, then its way faster than bisection. But, added speed has a cost. It requires differentiability and the derivative \(f^\prime\). Also, convergence is sensitive to choice of \(x_0\).

[4]:

disp('newtons_method.png')

[image: ../_images/nblinks_root_finding_methods_4_0.png]

Newton algorithm (for optimization)

In the context of unconstrained optimization, Newton’s method can be used to find the optimum value. Apply the above method to find a root of \(g^\prime(x) = 0\). The algorithm becomes

Assume that the 1st derivative \(g^\prime(x)\), its 2nd derivative \(g^{\prime\prime}(x)\), and an initial guess \(x_0\) are given. Set \(t=0\),

	Calculate \(x_{t+1} = x_t - \frac{g^\prime(x_t)}{g^{\prime\prime}(x_t)}\)

	If the convergence criteria is met, then stop; otherwise, set \(t \xleftarrow{} t + 1\) and return to step i.

Example: Find \(x^\star\) to maximize \(g(x) = \frac{\log x}{1 + x}\), \(x \in [1,5]\).

a. Find root via bisection

b. Find root via newton’s method

[5]:

import numpy as np
import sympy as sym
import warnings
warnings.filterwarnings("ignore", category=RuntimeWarning)

class RootFinder:

 def __init__(self, sympy_f, x):

 self.sympy_f = sympy_f
 self.x = x
 self._calculate_derivative()
 self._calculate_derivative_2()
 self.f = self._lambify(self.sympy_f)

 self.bisection_x = None
 self.newton_x = None
 self.secant_x = None
 self.gss_x = None

 print('Function:')
 print(self.sympy_f)
 print('First derivative:')
 print(self.sympy_deriv)
 print('Second derivative')
 print(self.sympy_deriv_2)

 def _lambify(self, f):
 """Convert a function to a lambda function"""
 return sym.lambdify(self.x, f, "numpy")

 def _calculate_derivative(self):
 """Calculate the derivative of the function"""
 self.sympy_deriv = sym.diff(self.sympy_f, self.x)
 self.deriv = self._lambify(self.sympy_deriv)

 def _calculate_derivative_2(self):
 """Calculate the second derivative of the function"""
 self.sympy_deriv_2 = sym.diff(self.sympy_f, self.x, 2)
 self.deriv_2 = self._lambify(self.sympy_deriv_2)

 def set_problem(self, solution_type='root', # or 'max'
 epsilon=1e-8, iter=1000):
 self.solution_type = solution_type
 self.epsilon = epsilon
 self.iter = iter

 if solution_type == 'root':
 self.problem_f = self.f
 self.problem_deriv = self.deriv
 self.conditional = lambda xs, iteration : (abs(self.problem_f(xs[-1])) > self.epsilon) or (self.iter > iteration)
 elif solution_type == 'max':
 self.problem_f = self.deriv
 self.problem_deriv = self.deriv_2
 self.conditional = lambda xs, iteration : True if len(xs) < 2 else (abs(self.problem_f(xs[-1] - xs[-2])) > self.epsilon) or (self.iter > iteration)

 def bisection_method(self, a, b):
 """
 Bisection method for root finding.
 """
 iteration = 0
 c = (a + b) / 2
 cs = [c]
 while self.conditional(cs, iteration):
 if self.problem_f(a) * self.problem_f(c) < 0:
 b = c
 else:
 a = c
 c = (a + b) / 2
 cs.append(c)
 iteration += 1
 self.bisection_x = c
 return c

 def newtons_method(self, x0):
 """
 Newton's method for root finding.
 """

 iteration = 0
 x = x0
 xs = [x]
 while self.conditional(xs, iteration):
 x = x - self.problem_f(x) / self.problem_deriv(x)
 iteration += 1
 xs.append(x)
 self.newton_x = x
 return x

 def secant_method(self, a, b):
 '''Approximate solution of f(x)=0 on interval [a,b] by the secant method.

 Parameters

 f : function
 The function for which we are trying to approximate a solution f(x)=0.
 a,b : numbers
 The interval in which to search for a solution. The function returns
 None if f(a)*f(b) >= 0 since a solution is not guaranteed.

 Returns

 m_N : number
 The x intercept of the secant line on the the Nth interval
 m_n = a_n - f(a_n)*(b_n - a_n)/(f(b_n) - f(a_n))
 The initial interval [a_0,b_0] is given by [a,b]. If f(m_n) == 0
 for some intercept m_n then the function returns this solution.

 Examples

 >>> f = lambda x: x**2 - x - 1
 >>> secant(f,1,2,5)
 1.6180257510729614
 '''
 f = self.problem_f

 iteration = 0
 if f(a)*f(b) >= 0:
 print("Secant method fails.")
 return None
 a_n = a
 b_n = b
 xs = [a_n]
 #while abs(self.f(a_n)) > 0.01:
 while self.conditional(xs, iteration):
 m_n = a_n - f(a_n)*(b_n - a_n)/(f(b_n) - f(a_n))
 xs.append(m_n)
 iteration += 1
 f_m_n = f(m_n)
 if f(a_n)*f_m_n < 0:
 a_n = a_n
 b_n = m_n
 elif f(b_n)*f_m_n < 0:
 a_n = m_n
 b_n = b_n
 elif f_m_n == 0:
 break
 self.secant_x = m_n
 return m_n

 def golden_selection_search_method(self, a, b):

 f = self.problem_f
 c = (np.sqrt(5) - 1) / 2

 x1 = b - c * (b - a)
 x2 = a + c * (b - a)
 while abs(b - a) > self.epsilon:
 if f(x2) > f(x1):
 b = x2
 x2 = x1
 x1 = b - c * (b - a)
 else:
 a = x1
 x1 = x2
 x2 = a + c * (b - a)
 self.gss_x = x1 #could be a,b,x1,x2... they all converge

 def visualize(self, low=0, high=5):
 print(f"\nRoots Found: Bisection: x={self.bisection_x}, Newton's Method: x={self.newton_x}, Secant method: x={self.secant_x}, GSS Method: x={self.gss_x}")
 xx = np.linspace(low, high, 100)
 import matplotlib.pyplot as plt
 plt.plot(xx, self.f(xx))
 try:
 plt.scatter([self.bisection_x], [self.f(self.bisection_x)], marker='o', label=f'Bisection: x={round(self.bisection_x,2)}')
 except:
 pass
 try:
 plt.scatter([self.newton_x], [self.f(self.newton_x)], marker='o', label=f'Newton: x={round(self.newton_x,2)}')
 except:
 pass
 try:
 plt.scatter([self.secant_x], [self.f(self.secant_x)], marker='o', label=f'Secant: x={round(self.secant_x,2)}')
 except:
 pass
 try:
 plt.scatter([self.gss_x], [self.f(self.gss_x)], marker='o', label=f'GSS: x={round(self.gss_x,2)}')
 except:
 pass
 plt.legend()
 plt.show()

[6]:

x = sym.Symbol('x')
rf = RootFinder(sym.log(x) / (x + 1), x)
rf.set_problem(solution_type='root', # or 'max'
 epsilon=1e-8, iter=1000)
b = rf.bisection_method(0, 5)
n = rf.newtons_method(0.5)
s = rf.secant_method(0.5, 5)
rf.visualize()

Function:
log(x)/(x + 1)
First derivative:
-log(x)/(x + 1)**2 + 1/(x*(x + 1))
Second derivative
(2*log(x)/(x + 1)**2 - 2/(x*(x + 1)) - 1/x**2)/(x + 1)

Roots Found: Bisection: x=1.0000000000000004, Newton's Method: x=1.0, Secant method: x=1.0, GSS Method: x=None

[image: ../_images/nblinks_root_finding_methods_7_1.png]

[7]:

x = sym.Symbol('x')
rf = RootFinder(4 * x**2 * sym.exp(-2 * x), x)
rf.set_problem(solution_type='max', # or 'max'
 epsilon=1e-8, iter=1000)
b = rf.bisection_method(0, 5)
n = rf.newtons_method(0.5)
s = rf.secant_method(0.5, 5)
rf.golden_selection_search_method(0.5, 5)
rf.visualize()

Function:
4*x**2*exp(-2*x)
First derivative:
-8*x**2*exp(-2*x) + 8*x*exp(-2*x)
Second derivative
8*(2*x**2 - 4*x + 1)*exp(-2*x)

Roots Found: Bisection: x=5.0, Newton's Method: x=1.0, Secant method: x=1.0, GSS Method: x=1.7071067733805956

[image: ../_images/nblinks_root_finding_methods_8_1.png]

[8]:

x = sym.Symbol('x')
rf = RootFinder(sym.exp(-x) - sym.log(x), x)
rf.set_problem(solution_type='root', # or 'max'
 epsilon=1e-8, iter=1000)
b = rf.bisection_method(0, 5)
n = rf.newtons_method(0.5)
s = rf.secant_method(0.5, 5)
rf.visualize()

Function:
-log(x) + exp(-x)
First derivative:
-exp(-x) - 1/x
Second derivative
exp(-x) + x**(-2)

Roots Found: Bisection: x=1.3097995858041505, Newton's Method: x=1.3097995858041505, Secant method: x=1.3097995858041505, GSS Method: x=None

[image: ../_images/nblinks_root_finding_methods_9_1.png]

Secant method

Basic idea

Newton’s method requires a formula for \(f^\prime(x)\). To avoid this, approximate \(f^\prime(x)\) at \(x_0\) by a difference ratio. That is, recall from calculus that

\[\begin{align}\begin{aligned}f^\prime(x) \approx \frac{f(x+h) - f(x)}{h}\\where :math:`h` is small and positive.\end{aligned}\end{align} \]

This can also be expressed as

\[f^\prime(x) \approx \frac{f(x) - f(x_0)}{x - x_0}\]

The secant method follows Newton’s method except we substitute a differenceratio for \(f^\prime(x)\). Name is because the linear approximaiton is a secant not a tangent.

Algorithm

Suppose \(f(x)\) and 2 initial guesses \(x_0\) and \(x_1\) are given. Set \(t=1\).

	Calculate \(x_{t+1} = x_t - \frac{f^\prime(x_t)}{\frac{f^\prime(x_t) - f^\prime(x_{t-1})}{x_t - x_{t-1}}}\)

i.e. \(x_{t+1} = x_t - f^\prime(x_t) \frac{x_t - x_{t-1}}{f^\prime(x_t) - f^\prime(x_{t-1})}\)

If the convergence criteria are satisfied, then stop. Else, set \(t\xleftarrow{} t+1\) and return to step i.

Remarks

Can be unstable at early iterations bc the difference ratio may be a poor approximation of \(f^\prime\); reasonable sacrifice if \(f^\prime\) is not available.

If secant method converges, order is almost quadratic (similar to newton method).

Fisher Scoring

In maximum likelihood applications, the goal is to find roots of the log-likelihood function, ie. \(l^\prime(\hat{\theta}) = 0\).

In this context, Newton’s method looks like

\[\theta_{t+1} = \theta_t - \frac{l^\prime(\theta_t)}{l^{\prime\prime}(\theta_t)}\]

\(t \geq 0\).

Recall that \(-l^{\prime\prime}(\theta)\) is an approximate of the Fisher information \(I_n(\theta)\). So, we can rewrite Newton’s method as

\[\theta_{t+1} = \theta_t + \frac{l^\prime(\theta_t)}{I_n(\theta_t)}\]

\(t \geq 0\).

This modification is called Fisher’s scoring

Example: \(g(x) = \frac{\log x}{1+x}\)

Newton’s Method

\(x_{t+1} = x_t + h_t\) where \(h_t = -\frac{g^\prime(x_t)}{g^{\prime\prime}(x_t)}\)

\(g^\prime(x) = -log(x)/(x + 1)^2 + 1/(x*(x + 1))\)

The netwon increment is

\(h_t = \frac{(x_t + 1)(1 + 1/x_t - \log x_t)}{3 + 4/x_t + 1/(x_t)^2 - 2 \log x_t}\)

Secant method

\(x_{t+1} = x_t - g^\prime(x_t) \frac{x_t - x_{t-1}}{g^\prime(x_t) - g^\prime(x_{t-1})}\)

Golden section search (GSS) method

It is a simple way of finding the minimizer of a function \(f\) which has a simple minimum on the interval \([a, b]\). Assume that \(f(x)\) is a continuous function.

Note that the method applies as well as to find the maximum.

The ideas of GSS are similar to bisection.

In designing the method, we seek to satisfy 2 goals:

	An optimal reduction factor for the search interval

	minimum number of function calls

So we want to perform 1 new function evaluation in each step. Also, we want a constant reduction factor, say c, for the size of the interval.

For \(x_1\) and \(x_2\) in \([a,b]\), there are 2 cases.

	if \(f(x_1) < f(x_2)\), then \([a,b] \xrightarrow{} [a, x_2]\) with interval size reduction \(x_2 - a = c(b-a) \xrightarrow{} x_2 = (1 - c)a + cb\)

	if \(f(x_1) > f(x_2)\), then \([a,b] \xrightarrow{} [x_1, b]\) with interval size reduction \(b - x_1 = c(b-a) \xrightarrow{} x_1 = ca + (1 - c)b\)

Thus, once we know “c”, we know the location of \(x_1\) and \(x_2\)

Without loss of generality, we focus on the case \(f(x_1) < f(x_2)\). For ease of calculation, take \([a, b] = [0, 1]\).

If \(f(x_1) < f(x_2)\), then we recycle \(x_1 = 1 - c\) and have to determine where to evaluate next, either a the left, or at the right of \(1 - c\).

	Suppose we place a new function evaluation at the left of \(x_1 = 1 - c\). It can be shown that \(c\) is obtained by solving \(c^2 + c - 1 = 0\). The positive root leads to \(c = \frac{-1 + \sqrt{5}}{2}\) which equals approximately \(0.6180\).

	Suppose we place a new function evaluation at the right of \(x_1 = 1 - c\). It can be shown that \(c\) is obtained by solving \(1 - c^2 = 0\). The (double) root of this equation is 1, which is unhelpful because it does not give any reduction! So, we exclude this possibility.

Thus, we have 2 rules:

	If \(f(x_1) < f(x_2)\), we keep \(x_1\) which becomes \(x_2\) and we compute a new \(x_1\). using \(b - x_1 = c(b-a) \xrightarrow{} x_1 = ca + (1 - c)b\).

	If \(f(x_1) > f(x_2)\), we keep \(x_2\) which becomes \(x_1\) and we compute a new \(x_2\). using \(x_2 - a = c(b-a) \xrightarrow{} x_2 = (1 - c)a + cb\).

\(c = \frac{\sqrt{5} - 1}{2}\) is called the golden ratio.

GSS Algorithm

Step 1: Given initial interval \([a_1, b_1]\) and precision \(\epsilon\), set \(c = \frac{\sqrt{5} - 1}{2} = 0.618\). Calculate \(x^1_1 = b_1 - c(b_1 - a_1)\) and \(x_2^1 = a_1 + c(b_1 - a_1)\).

Step 2: If \(f(x_2^i) > f(x_1^i)\), update \(a_{i+1} = a_i\), \(b_{i+1} = x_2^i\), \(x_2^{i+1} = x_1^i\), \(x_1^{i+1} = b_{i+1} - c(b_{i+1} - a_{i+1})\)

If \(f(x_2^i) \leq f(x_1^i)\), update \(a_{i+1} = x_1^i\), \(b_{i+1} = b_i\), \(x_1^{i+1} = x_2^i\), \(x_2^{i+1} = a_{i+1} + c(b_{i+1} - a_{i+1})\)

Step 3: If \(|b_{i+1} - a_{i+1}| \leq \epsilon\), stop; otherwise, set \(i \xleftarrow{} i+1\) and go to step 2.

Multivariate optimization problems

Newton’s method

Suppose that \(g(\vec{x})\) is a function of several variables, say \(\vec{x} = (x_1, x_2, ..., x_p) \in \mathbf{R}^p\).

Newton’s method works exactly the same as before, just the derivatives are more complicated.

\(\dot{g}(\vec{x})\) is the gradient-vector of first partial derivatives

\(\ddot{g}(\vec{x})\) is the Hessian-matrix of second partial derivatives

Based on Taylor’s formula, Newton’s method is \(\vec{x}^{(t+1)} = \vec{x}^{(t)} - [\ddot{g}(x^{(t)})]^{-1} \dot{g}(x^{(t)})\)

Example: Let \(\vec{x} = (x_1, x_2)\) and \(g(\vec{x}) = 0.5 x_1^2 + 2.5 x_2^2\)

\(g: \mathbf{R}^2 \xrightarrow{} \mathbf{R}\)

(\(\mathbf{R}^p \xrightarrow{} \mathbf{R}\))

Using Newton’s update, we have \(\vec{x}^{(t+1)} = \vec{x}^{(t)} - [\ddot{g}(x^{(t)})]^{-1} \dot{g}(x^{(t)})\)

Where

\[\begin{split}\dot{g}(x) = \begin{bmatrix} \frac{\delta g}{\delta x_1}\\ \frac{\delta g}{\delta x_2}\end{bmatrix} = \begin{bmatrix} x_1 \\ 5x_2\\ \end{bmatrix}\end{split}\]

and

\[\begin{split}\ddot{g}(\vec{x}) = \begin{bmatrix}
\frac{\delta^2 g}{\delta x_1^2} & \frac{\delta^2 g}{\delta x_1 x_2}\\
\frac{\delta^2 g}{\delta x_2 x_1} & \frac{\delta^2 g}{\delta x_2^2}\\
\end{bmatrix} = \begin{bmatrix}
1 & 0\\
0 & 5\\
\end{bmatrix}\end{split}\]

Example: (Example 2.4 on pg 35 in Gibbons + H)

Apply Newton’s method to a complicated bivariate function

[8]:

import numpy as np
import sympy as sym
from itertools import permutations, product
import matplotlib.pyplot as plt

class RootFinder:

 def __init__(self, sympy_f):
 self.sympy_f = sympy_f
 self.vars = list(sympy_f.free_symbols)
 self._calculate_derivative()
 self._calculate_derivative_2()
 self._inv_jacobian()
 self.f = self._lambify(self.sympy_f)

 self.newton_x = None

 print('Function:')
 print(self.sympy_f)
 print('First derivative:')
 print(self.deriv_vec)
 print('Second derivative')
 print(self.jacobian)
 print()

 def _lambify(self, f):
 """Convert a function to a lambda function"""
 return lambda x : float(f.evalf(subs=dict(zip(self.vars, x))))

 def _calculate_derivative(self):
 """Calculate the derivative of the function"""

 num_params = len(self.vars)
 self.deriv_vec = np.zeros((num_params,), dtype=object)
 self.deriv_vec_lambdify = np.zeros((num_params,), dtype=object)
 # Add all squared terms
 for a in self.vars:
 idx_a = self.vars.index(a)
 sympy_partial_deriv = sym.diff(self.sympy_f, a)
 self.deriv_vec[idx_a] = sympy_partial_deriv
 self.deriv_vec_lambdify[idx_a] = self._lambify(sympy_partial_deriv)

 def _calculate_derivative_2(self):
 """Calculate the second derivative of the function"""
 # Add all pairs
 combins = list(permutations(self.vars, 2))

 # Establish jacobian
 num_params = len(self.vars)
 jacobian = np.zeros((num_params, num_params), dtype=object)
 jacobian_lambdify = np.zeros((num_params, num_params), dtype=object)

 # Add all squared terms
 for a in self.vars:
 idx_a = self.vars.index(a)
 sympy_partial_deriv = sym.diff(self.sympy_f, a)
 sympy_sec_partial_deriv = sym.diff(sympy_partial_deriv, a)
 jacobian[idx_a, idx_a] = sympy_sec_partial_deriv
 jacobian_lambdify[idx_a, idx_a] = self._lambify(sympy_sec_partial_deriv)

 for (a, b) in combins:
 idx_a = self.vars.index(a)
 idx_b = self.vars.index(b)
 sympy_partial_deriv = sym.diff(self.sympy_f, a)
 sympy_sec_partial_deriv = sym.diff(sympy_partial_deriv, b)
 jacobian[idx_a, idx_b] = sympy_sec_partial_deriv
 jacobian_lambdify[idx_a, idx_b] = self._lambify(sympy_sec_partial_deriv)

 self.jacobian = jacobian
 self.jacobian_lambdify = jacobian_lambdify

 def _inv_jacobian(self):
 jacobian = sym.Matrix(self.jacobian)
 inv_jacobian = jacobian.inv()
 inv_jacobian = np.array(inv_jacobian, dtype=object)
 self.inv_jacobian = inv_jacobian

 inv_jacobian_lambdify = np.zeros((len(inv_jacobian), len(inv_jacobian)), dtype=object)
 for i in range(len(inv_jacobian)):
 for j in range(len(inv_jacobian)):
 inv_jacobian_lambdify[i, j] = self._lambify(inv_jacobian[i, j])
 self.inv_jacobian_lambdify = inv_jacobian_lambdify

 def _evaluate_func_arr(self, f, x):
 # function f is an array (vector or matrix) of lambdas
 # x is a scalar or array of input values
 shape = f.shape
 output = np.zeros(shape)
 for idx in product(*[range(s) for s in shape]):
 output[idx] = f[idx](x)
 return output

 def newtons_method(self, x0, epsilon):
 """
 Newton's method for root finding.

 x0 must be of length = number of variables in expression, organized according to order in `self.vars`
 """
 print("Starting Newton-Raphson with specification:", dict(zip(self.vars, x0)))
 x = x0
 self.xs = [x]
 self.fs = [self.f(x)]
 while abs(self.f(x)) > epsilon:
 inv_jacob_x = self._evaluate_func_arr(self.inv_jacobian_lambdify, x)
 deriv_x = self._evaluate_func_arr(self.deriv_vec_lambdify, x)
 x = x - inv_jacob_x @ deriv_x
 self.xs.append(x)
 self.fs.append(self.f(x))
 self.newton_x = x
 return x

 def plot(self):
 plt.plot(self.fs)
 plt.show()

x = sym.Symbol('x')
y = sym.Symbol('y')
rf = RootFinder(0.5 * x**2 + 2.5 * y**2)

n = rf.newtons_method([1, 1], 1e-6)
print("Found root:", n)
rf.plot()

Function:
0.5*x**2 + 2.5*y**2
First derivative:
[1.0*x 5.0*y]
Second derivative
[[1.00000000000000 0]
 [0 5.00000000000000]]

Starting Newton-Raphson with specification: {x: 1, y: 1}
Found root: [0. 0.]

[image: ../_images/nblinks_root_finding_methods_15_1.png]

[15]:

x = sym.Symbol('x')
y = sym.Symbol('y')
rf = RootFinder(-(5 * x**2 + y**2 + 4 * x * y - 14 * x - 6 * y + 20))

Add minimum functionality
#n = rf.newtons_method([1, 1], 1e-6)
#print("Found root:", n)

Function:
-5*x**2 - 4*x*y + 14*x - y**2 + 6*y - 20
First derivative:
[-10*x - 4*y + 14 -4*x - 2*y + 6]
Second derivative
[[-10 -4]
 [-4 -2]]

[13]:

x = sym.Symbol('x')
y = sym.Symbol('y')
rf = RootFinder((-1)*((((x**2)+y-11)**2)+(x+(y**2)-7)**2))

Add minimum functionality
n = rf.newtons_method([1, 1], 1e-6)
print("Found root:", n)

Function:
-(x + y**2 - 7)**2 - (x**2 + y - 11)**2
First derivative:
[-4*x*(x**2 + y - 11) - 2*x - 2*y**2 + 14
 -2*x**2 - 4*y*(x + y**2 - 7) - 2*y + 22]
Second derivative
[[-12*x**2 - 4*y + 42 -4*x - 4*y]
 [-4*x - 4*y -4*x - 12*y**2 + 26]]

Starting Newton-Raphson with specification: {x: 1, y: 1}
Found root: [-3.77935206 -3.2832109]

Newton-like methods

Newton’s methods rely on updating equations \(x^{(t+1)} = x^{(t)} + h^{(t)}\) where \(h^{(t)} = -[\ddot{g}(x^{(t)})]^{-1} \dot{g}(x^{(t)})\). The difficulty in the multivariate case is the derivation and/or computation of the Hessian matrix and its inverse.

A Newton-like method uses instead

\[x^{(t+1)} = x^{(t)} - [M^{(t)}]^{-1} \dot{g}(x^{(t)})\]

where \(M^{(t)}\) approximates the Hessian matrix.

Question: Is it possible to use some other matrix, say \(M^{(t)}\), in place of the Hessian?

Yes!

This idea inspires a medley of algorithms:

Steepest ascent/descent method

Fix matrices \(M^{(t)}\) and numbers \(\alpha^{(t)}, t\geq 0\).

Ascent/decsent method look like

\[x^{(t+1)} = x^{(t)} - \alpha^{(t)} [M^{(t)}]^{-1} \dot{g}(x^{(t)})\]

Goal is to choose \(M^{(t)}\) and \(\alpha^{(t)}\) s.t. the function increases/decreases when \(x^{(t)}\) is updated to \(x^{(t+1)}\).

We simplify the problem by setting \(M^{(t)} = -I\) for ascent and descent takes \(M^{(t)} = I\).

Motivation is the basic fact from multivariate calculus that the gradient points in the direction of steepest ascent. Then, the algorithm looks like

\[x^{(t+1)} = x^{(t)} + \alpha^{(t)} \dot{g}(x^{(t)})\]

Or, for steepest descent,

\[x^{(t+1)} = x^{(t)} - \alpha^{(t)} \dot{g}(x^{(t)})\]

s.t. \(t \geq 0\) and where \(\alpha^{(t)}\) is the line search parameter that determines how far to go in a given direction.

How do we pick a good \(\alpha^{(t)}\)?

	Determine appropriate value for \(\alpha^{(t)}\) at each iteration in a one-dimensional minimization problem

\[\min_{\alpha^{(t)}} g(x^{(t)} - \alpha^{(t)} \dot{g}(x^{(t)}))\]

can be solved by methods already discussed.

Golden Section Search and Bisection can be used for steepest descent.

	Another approach is “backtracking”

	Backtracking approach determines \(\alpha^{(t)}\) iteratively: (Ascent)

	Start with \(\alpha^{(t)} = 1\)

	Compute update \(x^{(t+1)}\) with this \(\alpha^{(t)}\)

	If ascent holds, then increment \(t\); otherwise, set \(\alpha^{(t)} \xleftarrow{} \frac{\alpha^{(t)}}{2}\) and go back to step 2.

Common choices of the step size

	Exact line search

\[\alpha^{(t)} \equiv \argmin_{\alpha \geq 0} g(x^{(t)} - \alpha^{(t)} \dot{g}(x^{(t)}))\]

if \(g\) is convex, the one-dimensional minimization problem is also convex.

	Limited minimization

\[\alpha^{(t)} \equiv \argmin_{\alpha \in [0, s]} g(x^{(t)} - \alpha \dot{g}(x^{(t)}))\]

	Constant stepsize \(\alpha^{(t)} = s > 0\) for all \(t\)

simple rule but may not converge if it is too large or may converge too slow bc it is too small.

	Diminishing step size

\(\alpha^{(t)} \xrightarrow{} 0\) and \(\sum_{t=1}^\infty \alpha^{(t)} = \infty\)

For example, \(\alpha^{(t)} = \frac{1}{t}\)

Descent not guaranteed at each step, only later when \(\alpha^{(t)}\) becomes small

\(\sum_{t=1}^\infty \alpha^{(t)} = \infty\) imposed to guarantee progress, does not become too slow.

Remarks: Good theoretical guarantees, but unless the right sequence is chosen, can also be a slow method.

	Successive step size reduction

Well known examples are Armijo rule (i.e. backtracking) and Goldstein rule

Example: For exact line search, we want to apply the method of steepest descent to the function \(f(x,y) = 4x^2 - 4xy + 2y^2\) with initial point \(x_0 = (2,3)\)

Remember, we are trying to find \(\alpha^{(t)}\) st

\[\alpha^{(t)} \equiv \argmin_{\alpha \geq 0} g(x^{(t)} - \alpha^{(t)} \dot{g}(x^{(t)}))\]

Gradient of \(f\) is \(\nabla f(x,y) = [\frac{\delta f}{\delta x}, \frac{\delta f}{\delta y}]^\prime = [8x-4y , 4y-4x]^\prime\), which is the steepest descent direction.

Starting at \(x^{(0)} = (2,3)^\prime\), we ahve \(\nabla f(x^{(0)}) = \nabla f(2,3) = (4,4)^\prime\)

Choose \(- \nabla f(x^{(0)}) = (-4, -4)^\prime\) as the direction of steepest descent.

Perform line search along \((-4,4)^\prime\) direction.

\[\begin{split}\begin{align*}
\phi(\alpha^{(0)}) &= f((2,3) - \alpha^{(0)} \nabla f(2,3))\\
&= f(x^{(0)} - \alpha^{(0)} \nabla f(x^{(0)}))\\
&= f(2 - 4 \alpha^{(0)}, 3 - 4 \alpha^{(0)})\\
\end{align*}\end{split}\]

Next step is to

\[\begin{split}\begin{align*}
\min_{\alpha^{(0)}} \phi(x^{(0)})\\
\min_{\alpha^{(0)}} f(2 - 4 \alpha^{(0)}, 3 - 4 \alpha^{(0)})\\
\min_{\alpha^{(0)}} (32\alpha^{(0)2} - 32 \alpha^{(0)} + 10)\\
\end{align*}\end{split}\]

This strictly convex function has a strict global minimum when \(\phi^\prime(\alpha) = 0\) at \(\alpha^{(0)} = \frac{1}{2}\).

Set \(x^{(1)} = x^{(0)} - \alpha^{(0)} \nabla f(x^{(0)}) = (2,3) - \frac{1}{2} (4,4) = (0,1)\)

Continuing the process, we have \(\nabla f(x^{(1)}) = \nabla f(0,1) = (-4, 4)\) and by defining \(\phi(x^{(1)}) = f(x^{(1)} - \alpha^{(1)} \nabla f(x^{(1)})) = f((0,1) - \alpha^{(1)} (-4, 4)) = f(-4\alpha^{(1)}, 1 - 4\alpha^{(1)})\).

Proceed in a similar manner as before to get \(\alpha^{(1)} = \frac{1}{10}\).

Set \(x^{(2)} = x^{(1)} - \alpha^{(1)} \nabla f(x^{(1)}) = (0, 1) - \frac{1}{10} (-4, 4) = (\frac{2}{5}, \frac{3}{5})\).

Repeat this process until solution.

We can see that the method of steepest descent produces a sequence of iterates \(x^{(t)}\) that is converging to the strict global minimizer of \(f(x,y)\) at \(x^\star = (0,0)\)

[]:

Code this

Theorems

The following theorems describe some important properties of the method of steepest descent.

Theorem 1: Let \(f: \mathbf{R}^n \xrightarrow{} \mathbf{R}\) be continuously differentiable on \(\mathbf{R}^n\) and let \(x_0 \in D\). Let \(\alpha^\star > 0\) be the minimizer of \(\phi(\alpha) = f(x_0 - \alpha \nabla f(x_0)), \alpha \geq 0\) and let \(x_1 = x_0 - \alpha^\star \nabla f(x_0)\). Then, \(f(x_1) < f(x_0)\).

In layman’s terms: Therefore, if you are heading in the direction of steepest descent, then you are headed in the right direction.

Theorem 2: Let \(f: \mathbf{R}^n \xrightarrow{} \mathbf{R}\) be continuously differentiable in \(\mathbf{R}^n\) and let \(x_k\) and \(x_{k+1}\), for \(k \geq 0\) be two consecutive iterates produced by the method of steepest descent. Then, the steepest directions from \(x_k\) and \(x_{k+1}\) are orthogonal, that is \(\nabla f(x_k) \times \nabla f(x_{k+1}) = 0\).

Theorem 3: Let \(f: \mathbf{R}^n \xrightarrow{} \mathbf{R}\) be a coercive function with continuous partial derivatives on \(\mathbf{R}^n\). Then, for any initial guess \(x_0\) the sequence of iterates produced by the method of steepest descent from \(x_0\) contains a subsequence that converges to a critical point of \(f\).

This result can be proved by applying the Bolzano-Weierstranss theorem.

 Support Vector Machines

Support Vector Machines

The original SVM algorithm was invented by Vladimir N. Vapnik. The current standard approach (“soft margin” SVM) was proposed by Corinna Cortes and Vapnik in 1993 and published in 1995.

SVM constructs a hyperplane or set of hyperplanes in a high or infinite dimensional space. SVM can be used for classification, regression, or other tasks. Intuitively, a good separation is achieved by the hyperplane that has the largest distance to the nearest training data point of any class (so-called functional margin). One single SVM model is for 2 label classification, where label is \(y \in \{-1, 1\}\). The hyperplane we want to find to separate the 2 classes is “h”. We use the
parameters \(\vec{w}\) and \(b\) to write our classifier as

\[h_{w,b}(\vec{x}) = g(\vec{w}^T \vec{x} + b)\]

Here, \(g(Z) = 1\) if \(z \geq 0\) and $g(Z) = -1 $ otherwise.

\(\vec{x} \in \mathbf{R}^p\), \(y \in \{-1, 1\}\)

\((\vec{x}, y)\) is called an example.

Geometric margin

[2]:

from utils import disp
disp('svm.png')

[image: ../_images/nblinks_svm_2_0.png]

The decision boundary corresponding to \((w,b)\) is shown along with the vector \(\vec{w}\). Note that \(\vec{w}\) is orthogonal to the separating hyperplane. Consider the opposing point, \(x_1\) (say, a blue point on the boundary) and \(x_2\) (say, a green point on the boundary line) which represents training examples closest to each other with labels \(y_1 = 1\) and \(y_2 = -1\). The distance to the decision boundary or the geometric margin \(\rho\) is half of
the line segment of \(x_1, x_2\), one minimum margin on each side.

The points on the boundary (i.e. margin line) are called the support vectors. They have \(\alpha_i > 0\)

Next, \(\vec{w}\) and \(b\) are scaled such that the closest points are the line \(|w^T x + b| = 1\)

We can write the constraint that all points are no closer than lines \(| w^T x + b | = 1\) (either side of the plane) by using the labels for signs: \(y (w^T x + b) \geq 1\)

For example,

if \(y = +1\), \(w^T x + b \geq 1\), and therefore \(y(w^T x + b) \geq 1\).

if \(y = -1\), \(w^T x + b \leq 1\), and therefore \(y(w^T x + b) \geq 1\))

In other words, the constraints state that all functional margins are at least \(1\).

So, we know \(w^T x_1 + b = 1\) and \(w^T x_2 + b = -1\) (see above), then \(w^T (x_1 - x_2) = 2\)

Considering that \(w\) and \(x_1 - x_2\) are parallel vectors, then

\[||w^T (x_1 - x_2) || = ||w|| \times |x_1 - x_2|| = 2\]

Therefore, \(||x_1 - x_2|| = \frac{2}{||w||}\)

Since \(||x_1 - x_2|| = 2 \rho\), then (by transitive property) \(\rho = \frac{1}{||w||}\)

The minimum geometric margin is \(\rho = \frac{1}{||w||}\).

So, how do we find the optimal boundary which maximizes the separation of the two classes?

Optimal Margin Classifier

We want to find a decision boundary that maximizes the geometric margin. Assume that we are given a linearly separable training set (i.e. that is possible to separate the positive and negative samples using some separating hyperplane). To find the decision boundary that maximizes the geometric margin, we maximize the margin \(\rho = \frac{1}{||w||}\) s.t. all points are no closer (on either side) than \(|w^T x + b| = 1\) to the separating hyperplane. We can rewrite the constraints on
\(y(w^T x + b) \geq 1\) for all training data points \(x\) with label \(y \in \{-1, 1\}\). To make the math nicer, we can write the objective in terms of \(||w||^2\).

Equation (1):

\[min_{w,b} \frac{1}{2} ||w||^2\]

Equation (2):

\[\hbox{s.t.} y_i (w^T x_i + b) \geq 1, i=1, 2, ..., m\]

These two

\[max_{w,b} \frac{1}{||w||} \hbox{s.t.} y_i (w^T x_i + b) \geq 1, i=1,...,m\]

\[min_{w,b} ||w|| \hbox{s.t.} y_i (w^T x_i + b) \geq 1, i=1,...,m\]

This is known as the SVM-primal optimization problem. The above is an optimization problem with a convex quadratic objective (1) and only linear constraints (2). We will use the lagrange duality to solve the above constrained optimization problem.

Convex quadratic optimization - Lagrange duality

Textbook: Boyd and Van den Berglue

Primal problem

Consider the following problem $ \min_{x} f(x)$ s.t. \(g_i(x) \leq 0\), for \(i=1, ..., k\) and \(h_j(x) = 0\), for \(j=1,...,l\).

Conventional SVM only uses \(g(x)\) and does not use \(h(x)\).

This is called the primal optimization problem. It has unequality as well as equality constraints. Define the Lagrangian (which describes the state of a dynamic system in terms of position coordinates and their time derivatives)

\[L(x, \alpha, \beta) = f(x) + \sum_{i=1}^k \alpha_i g_i(x) + \sum_{j=1}^l \beta_j h_j(x)\]

where \(\alpha_i \geq 0\), (\(i=1, ..., k\)) and \(\beta_j\) (\(j=1, ..., k\)) are called lagrange multipliers. Consider the quantity \(\theta_p(x) = \max_{\alpha, \beta} L(x, \alpha, \beta)\). In the problem \(\theta_p(x)\), if \(g_i(x) > 0\) or \(h_j(x) \neq 0\), this violates any of the primal constraints. One can verify that

\[\theta_p(x) = \max_{\alpha, \beta} L(X, \alpha, \beta) = \infty\]

Conversely, if the constraints are satisfied for a particular value of \(x\), then \(\theta_p(x) = f(x)\). So,

\[\begin{split}\theta_p = \begin{cases}
f(x)& \hbox{if x satisfies primal constraints}\\
0&o.w.\\
\end{cases}\end{split}\]

Hence, the minimization problem has been transformed to

\[\min_{x} \theta_p(x) = \min_x \min_{\alpha, \beta} L(x, \alpha, \beta)\]

Define \(p^\star = \min_{x} \theta_p(x)\) as the value of the primal problem. In fact, we see that hte primal problem has the same solution

Dual problem

Define \(\theta_D(\alpha, \beta) = \min_{x} L(x, \alpha, \beta)\). Pose the dual optimization problem as

\[\max_{\alpha, \beta} \theta_D(\alpha, \beta) = \max_{\alpha, \beta} \min_x L(x, \alpha, \beta)\]

define the optimal value \(d^\star = \max_{\alpha, \beta} \theta_D(\alpha, \beta)\) as the value of the dual problem.

We can see that the dual problem \(d^\star\) is pretty similar to our primal problem \(p^\star\), except tha thte order of the “max” and “min” are now exchanged.

The dual problem is much easier to solve than the primal problem. In fact, there is some relationship between the primal and dual problems:

\[\max \min (f) \leq \min \max (f)\]

This means that:

\[d^\star = \max_{\alpha, \beta} \min_x L(x, \alpha, \beta) \leq \min_{x} \max_{\alpha, \beta} L(x, \alpha, \beta) = p^\star\]

That is, \(d^\star \leq p^\star\). Therefore, we can use the dual problem to find a lower bound.

The term \(p^\star - d^\star\) is the duality gap. In general, the dualilty gap is not necessarily equal to zero. Under some conditions (known as Slater’s conditions), the duality gap is 0. We say that strong duality holds.

Saddle point

Resource: (Convex Optimization - Boyd and Vandenberghe, 2004)

Def: We define a saddle point as (\(x^\star\), \(\alpha^\star\)) s.t. \(\forall x \in \mathbf{R}^n\), \(\forall \alpha \geq 0\),

\[L(x^\star, \alpha) \leq L(x^\star, \alpha^\star) \leq L(x, \alpha^\star)\]

Thm. 1: (Saddle point theorem) Let \(x^\star \in \mathbf{R}^n\). If there exists \(\alpha^\star \geq 0\),s.t. \((x^\star, \alpha^\star)\) is a saddle point for the Lagrangian \(L\), then \(x^\star\) solves (P). Conversely, if \(x^\star\) is a solution of (P) at which the Slater’s constraint qualification is satisfied, then there exists \(\alpha^\star \geq 0\) s.t. \((x^\star, \alpha^\star)\) is a saddle point for \(L\). This is also known as the weak
duality theorem.

Question: Why is the space geometrically shaped like a saddle?

Thm. 2: If a saddle point exists, then \(p^\star = d^\star\). The saddle point theorem says that if \((x^\star, \alpha^\star\)) is a saddle point for \(L\), then \(x^\star\) solves the primal problem and \(\alpha^\star\) solves the dual problem, and the optimal values in the primal (\(p^\star\)) and dual problem (\(d^\star\)) coincides (i.e. \(p^\star = d^\star\)). This is known as the strong duality theorem and uses slater’s constraint qualifications.

Karush Kuh Tucker (KKT) conditions

The KKT conditions, also known as Kuhn-Tucker conditions, are 1st derivative tests (also called 1st order necessary conditions) for a solution in in nonlinear programming to be optimal, provided that some regularity conditions are satisfied. The KKT conditions were originally named after Harold W. Kuhn and Albert W. Tucker, who first published the conditions in 1951. Later, scholars discovered that the necessary conditions for this problem had been stated by William Karush in his master’s thesis
in 1939.

Thm: (Karush-Kuhn-Tucker) Suppose that he objective function \(f : \mathbf{R}^n \xrightarrow{} \mathbf{R}\) and the constraint function \(g : \mathbf{R}^n \xrightarrow{} \mathbf{R}\) and \(h_j: \mathbf{R}^n \xrightarrow{} \mathbf{R}\) are continuously differentiable at a point \(x^\star \in \mathbf{R}^n\). \(x^\star\) is a solution to the optimization problem iff there exists \(\vec{\alpha}\) and \(\vec{\beta}\) s.t.

	Stationarity : \(\triangledown f(x^\star) - \sum_{i=1}^k \alpha_i \triangledown g_i (x^\star) - \sum_{j=1}^l \beta_j \triangledown h_j(x^\star) = 0\)

First derivative equals zero. Let’s say you have a function \(h(u)\), if there is a solution \(u^\star\), then if you look at \(h^\prime(u^\star) = 0\)

	Primal feasibility: \(g(x^\star) \leq 0\) for \(i=1, ..., k\) and \(h_j(x^\star) = 0\) for \(j = 1, ..., l\)

The primal problem should have a solution.

	Dual feasibility: \(\alpha_i \geq 0\) for \(i=1, ..., k\)

The dual problem should have a solution.

	Complementary slackness (c.s.): \(\alpha_i g_i(x^\star) = 0\) for \(i=1, ..., k\)

This applies only to inequality constraints. For the \(i^{\hbox{th}}\) inequality constraint, c.s. tells us that at \(x^\star\) either \(g_i(x^\star) = 0\) or the corresponding dual variable \(\alpha_i = 0\). If \(g_i(x^\star) = 0\), we say that the inequality constraint is tight at \(x^\star\) (\(\alpha_i > 0\)).

Solution to SVM problem - Dual problem

Recall our SVM primal problem:

\(\min_{w,b} \frac{1}{2} ||w||^2\) s.t. \(y_i (w^\prime x_i + b) \geq 1\) for \(i=1,..., m\)

We will first transform the constraint to standard form.

Step 1: Constriant transformed

\(g_i(w, b) = -y_i(w^\prime x_i + b) + 1 \leq 0\), \(i=1, ..., m\)

Step 2: Lagrangian

\(L(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^m \alpha_i [y_i (w^\prime x_i + b) - 1]\)

where \(\alpha_i\) are the lagrangian multipliers. The intuitive meaning of \(\alpha_i\) is how important is instance \(i\) in forming the final solution. \(\alpha_i = 0\) means the instance \(i\) is not important at all.

To find the dual problem, we first minimize \(L(w, b, \alpha)\) wrt \(w\) and \(b\) (for fixed \(\alpha\)) in order to get \(\theta_d = \min_{w,b} L(w,b,\alpha)\)

Step 3: Differentiate \(L\) wrt \(w, b\) and set the differential to \(0\).

For \(w\),

\[\begin{split}\begin{align*}
\frac{\delta L(w, b, \alpha)}{\delta w} &= w \times \sum_{i=1}^m \alpha_i y_i x_i = 0\\
w &= \sum_{i=1}^m \alpha_i y_i x_i\\
\end{align*}\end{split}\]

For \(b\),

\[\begin{split}\begin{align*}
\frac{\delta L(w, b, \alpha)}{\delta b} &= 0 - \sum_{i=1}^m \alpha_i y_i = 0\\
\sum_{i=1}^m \alpha_i y_i &= 0\\
\end{align*}\end{split}\]

which provides a restriction on \(\alpha\).

Step 4: Put the results from step 3 back into \(L\)

\[\begin{split}\begin{align*}
L(w, b, \alpha) &= \frac{1}{2}||w||^2 - \sum_{i=1}^m \alpha_i [y_i (w^\prime x_i + b) - 1]\\
&=\frac{1}{2} w^\prime w - \sum_i \alpha_i y_i w^\prime x_i - \sum_i \alpha_i y_i b + \sum \alpha_i \\
&= \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x^\prime_i x_j - \sum_i \sum_j \alpha_i \alpha_j y_i y_j x^\prime_i x_j - \sum_i \alpha_i y_i b + \sum_i \alpha_i\\
&= -\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x^\prime_i x_j - \sum_i \alpha_i y_i b + \sum_i \alpha_i\\
&= -\frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j x^\prime_i x_j + \sum_i \alpha_i\\
\end{align*}\end{split}\]

Step 5: Form the dual optimization problem.

\[\begin{split}\begin{align*}
\max_{\alpha} \theta_D (\alpha) &= \max_{\alpha} \min_{w,b} L(w, b, \alpha)\\
&= \max_{\alpha} W(\alpha)\\
\end{align*}\end{split}\]

So, the SVM-dual optimization problem is

\[\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} y_i y_j \alpha_i \alpha_j x_i^\prime x_j\]

s.t. \(\alpha_i \geq 0\), \(i=1, ..., m\) and \(\sum_i \alpha_i y_i = 0\).

Step 6: KKT conditions for SVM

	Stationarity

\(\frac{\delta L}{\delta W} = 0 = w - \sum_i \alpha_i y_i x_i = 0\)

\(\frac{\delta L}{\delta b} = 0 = \sum_{i} \alpha_i y_i = 0\)

	Primal feasibility

\(y_i (w^\prime x_i + b) - 1 \geq 0\) for \(i=1, ..., m\)

	Dual feasibility

\(\alpha_i \geq 0\) for \(i=1, ..., m\)

	Complementary slackness

\(\alpha_i (y_i (w^\prime x_i + b) - 1) = 0\) for \(i = 1, ..., m\)

The last KKT condition (c.s.) states that \(\alpha_i (y_i (w^\prime x_i + b) - 1) = 0\) for each point. Using the 2nd KKT condition (primal feasibility), c.s. means that

	\(y_i (w^\prime x_i + b) - 1 > 0\) and \(\alpha_i = 0\)

(i.e. inequality constraint is satisfied but not saturated (b/c \(\alpha_i = 0\)))

	\(y_i (w^\prime x_i + b) - 1 = 0\) and \(\alpha_i > 0\)

(i.e. inequality constraint is saturated)

Inequality constraints which are saturated are said to be “active”, while unsaturated constraints are “inactive”. The training points with \(\alpha_i = 0\) representing inactive constraint does not impact the value of \(w\) (i.e. does not contribute to the hyperplane).

For example, if there are 5 components

\[w = \sum_i \alpha_i y_i x_i = \alpha_1 y_1 x_1 + \alpha_2 y_2 x_2 + \alpha_3 y_3 x_3 + \alpha_4 y_4 x_4 + \alpha_5 y_5 x_5\]

where \(\alpha_1 = \alpha_2 = \alpha_5 = 0\) then only \(\alpha_3\) and \(\alpha_4\) are the only things that impact \(w\). These two values are the support vectors. In other words, the training points with \(\alpha_i > 0\) representing active constraints on the position of the support hyperplane are called the support vectors. These are the vectors that are situated on the support hyperplane and they determine the solution. Typically, there are only few of them, which
people call a “sparse” solution.

Step 7: Recover the primal solution (\(w\) and \(b\))

Assume that we have solved the dual and have the solution on \(\vec{\alpha}\), call it \(\vec{\alpha}^\star\). Then, we can get the optimal value of \(w\) by

\[w^\star = \sum_{i=1}^m \alpha_i^\star y_i x_i = \sum_{i \in S} \alpha_i^\star y_i x_i\]

where \(S\) is the set of index of support vectors.

Next, we derive a solution for \(b\) by using the complementary slackness condition. Assume that \(X_i\) is a support vector (i.e. \(\alpha_i > 0\)), then

\[\begin{split}\begin{align*}
y_i (w^\prime x_i + b) - 1 &= 0\\
y_i (w^\prime x_i + b) &= 1\\
y_i^2 (w^\prime x_i + b) &= y_i\\
(w^\prime x_i + b) &= y_i\\
b &= y_i - w^\prime x_i\\
b^\star &= y_i - \sum_i \alpha_i^\prime y_i x^\prime_i x_i\\
\end{align*}\end{split}\]

where \(y_i \in \{ -1, 1\}\). So, using any suport vector, one can determine \(b\). But, for numerical stability, it is better to average over all of them.

Step 8: Define the classifier

We are really interested in the function \(f(.)\) which can be used to classify future test cases,

\[f(z) = w^\prime z + b = \sum_i \alpha_i y_i x^\prime_i z + b\]

To classify a new test case \(z\), we will use sign \(f(z)\), i.e. \(z\) is classified as class “+1” if \(f(z) \geq 0\) and “-1” if \(f(z) \leq 0\). As a note, a more complicated way of classifying is through “one class classification”.

Remarks

We take a problem in terms of one set of variables (primal variables \(w\) and \(b\)) and restate the problem in terms of the dual variable (\(\alpha\)). In applying duality, we also convert a minimization problem into a maximization problem. This SVM dual problem is a quadratic program. A quadratic program is one in which the objective function is quadratic. in the variables (in this case \(\alpha\)) and the constraints are linear. This can be solved using any quadratic
programming algorithm (or package).

[3]:

ToDo

Non-separable case

[1]:

from utils import disp
disp('svm_nonlin_sep.png')

[image: ../_images/nblinks_svm_12_0.png]

For non-separable case, the problem lies in the constraint, which cannot always be satisfied. So, we relax the constraint by introducing “slack variables” \(\zeta_i\) where

\[\begin{split}\begin{cases}
w^\prime x_i + b \leq -1 + \zeta_i & \hbox{for } y_i = -1\\
w^\prime x_i + b \geq 1 - \zeta_i & \hbox{for } y_i = +1\\
\end{cases}\end{split}\]

where \(\zeta_i \geq 0\).

The variables \(\zeta_i\) allow for violations of the constraints. We should penalize the objective function for these violations by using some penalty term. Penalty functions of the form \(c(\sum_i \zeta_i)^k\) will lead to convex optimization problems for positive integers \(k\). For \(k=1, 2\) it still is a quadratic program. When \(k=2\) it is the L2 SVM. In our case, we choose \(k=1\). \(c\) controls the tradeoff between the penalty and margin.

The new primal problem becomes

\[\min_{w,b} \frac{1}{2} ||w||^2 + c \sum_i \zeta_i\]

s.t. \(y_i(w^\prime x_i + b) - 1 + \zeta_i \geq 0\), \(\forall i\) and \(\zeta_i \geq 0\), \(\forall i\).

The lagrangian is

\[L(w, b, \zeta, \alpha, \gamma) = \frac{1}{2} ||w||^2 + c\sum_i \zeta_i - \sum_i \alpha_i (y_i (w^\prime x_i + b) + \zeta_i - 1) - \sum_i \gamma_i \zeta_i\]

where \(\alpha_i\) and \(\gamma_i\) are the Lagranage multpliers. The SVM dual form is

\[\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x^\prime_i x_j\]

s.t. \(0 \leq \alpha_i \leq c\), \(i = 1, ..., m\) and \(\sum_i \alpha_i y_i = 0\).

Note that the constraint \(\alpha_i \geq 0\) becomes now \(0 \leq \alpha_i \leq c\). In this case, we have 3 types of training points:

	\(\alpha_i = 0\) are non-interesting points

	\(0 < \alpha_i < c\) are the support vectors on the margin line;

\(y_i (w^\prime x_i + b) = 1\), \(\zeta_i = 0\).

	\(\alpha_i > c\) are a support vector inside the side (or even misclassified).

\(y_i (w^\prime x_i + b) < 1\), \(\zeta_i > 0\).

The SV that correspond to \(0<\alpha<c\) are called “margin SV”. The SV that correspond to \(\alpha=c\) are called “non-margin SV”.

Non-linear Non-separable case

So far, we have only considered classifier with a linear decision boundary. How to proceed with a nonlinear problem? Transform \(X_i\) to a higher dimensional space (i.e. map the data into a higher dimensional space where it will be linearly separable).

	Input space: the spcae where the point \(X_i\) is located.

	Feature space: the space of \(\phi(X_i)\) after transformation with a map \(\phi\)

Linear operations in the feature space is equivalent to non-linear operations in input space.

Kernels

Computation in the feature space can be costly because it is high dimensional. Kernels are a clever way of mapping data into a higher dimensional feature space. Notice that the dual problem contains instances through an inner product. The inner product between instances allows us to use kernel function (In other words, we use kernel function as a replacement of the inner product).

Let \(\phi : \mathbf{X} \xrightarrow{}{} \mathbf{F}\) where \(\mathbf{X}\) is input space and \(\mathbf{F}\) is feature space (Hilbert space).

Definition: A kernel \(k\) is defined as a function s.t. \(k(x,z) = \phi(x)^\prime \phi(z)\)

\(k\) maps data \(X \times X \xrightarrow{}{} \mathbf{R}\)

So, \((x, z) \xrightarrow{}{} \phi(x,z) = \phi(x)^\prime \phi(z)\)

Examples of kernels

	Polynomial kernel: \(k(x, z) = (x^\prime z + c)^d\) where \(d\) is the degree of your polynomial

	Gaussian kernel (or RBF kernel) \(k(x,z) = \exp \{ -\frac{||x-z||^2}{\sigma^2} \}\)

Kernel Trick

As long as we can calculate the inner product in the feature space \(\mathbf{F}\), we do not need the mapping \(\phi\) explicitly. So, the key idea of the kernel technique or so-called “kernel trick” is to invert the chain of arguments. Choose a kernel \(k\) rather than a mapping \(\phi\) before applying a learning algorithm.

In practical use of SVM (or any other ML algo), the user specifies the kernel function. The transformation \(\phi(.)\) is not specifically stated. Given a kernel function \(k(x,z)\), the transformation \(\phi(.)\) is given by its eigenfunctions (a concept in functional analysis). Eigenfunctions can be difficult to construct explicitly. This is why people only specify the kernel without worrying about the exact transformation \(\phi\). Kernel function, being an inner product, is
really a similarity measure between 2 objects.

Consider a finite set of \(N\) points. Define the matrix

\[\begin{split}K = \begin{bmatrix}
k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_N)\\
\vdots\\
k(x_N, x_1) & k(x_N, x_2) & \dots & k(x_N, x_N)\\
\end{bmatrix}\end{split}\]

This matrix is called the Gram matrix or kernel matrix. It can be shown that \(K\) is a symmetric matrix. Not any symmetric function \(k\) can serve as a kernel function. The necessary and sufficient condition for \(k\) to be a valid kernel is to satisfy Mercer’s theorem.

Mercer’s Theorem: Corollary

The function \(k: X \times X \xrightarrow{}{} \mathbf{R}\) is a Mercer kernel iff for each \(n \in \mathbf{N}\), the \(n \times n\) matrix \(K = [k(x_i, x_j)]^n_{i,j=1}\) is positive semi-definite. Such kernels are called Mercer kernels \(z^T M z\).

Note: Do not confuse Mercer kernels (used in statistical learning) with smoothing kernels (used in density estimation).

SVM Soft-Margin Algorithm

Step 1: We want to solve \(\min_{w, b} \frac{1}{2} ||w||^2 + c \sum_i \zeta_i\) s.t. \(y_i (w^\prime \phi(x_i) + b) - 1 + \zeta_i \geq 0\), \(\forall i\) and \(\zeta_i \geq 0\), \(\forall i\)

Step 2: Constraints transformed \(g_i (w, b) = 1 - \zeta_i - y_i (w^\prime \phi(x_i) + b) \leq 0\) and \(h_i(w,b) = -\zeta_i \leq 0\)

Step 3: The Lagrangian is \(L = \frac{1}{2} ||w||^2 + c\sum_i \zeta_i - \sum_i \alpha_i (y_i(w^\prime \phi(x_i) + b) - 1 + \zeta_i)\) - \sum_i \beta_i \zeta_i

Step 4: Differeniate \(L\) wrt primal variables

	For \(w\), \(\frac{\delta L}{\delta w} = w - \sum_i \alpha_i y_i \phi(x_i) = 0\). Therefore, \(w = \sum_i \alpha_i y_i \phi(x_i)\)

	For \(b\), \(\frac{\delta L}{\delta b} = 0 - \sum_i \alpha_i y_i = 0\). Therefore, \(\sum_i \alpha_i y_i = 0\)

	For \(\zeta_i\), \(\frac{\delta L}{\delta \zeta_i} = c - \alpha_i - \beta_i = 0\). Therefore, \(c = \alpha_i + \beta_i, \forall i\)

Step 5: Put these results back into \(L\).

\[\begin{split}\begin{align*}
L &= \frac{1}{2} ||w||^2 + c \sum_i \zeta_i - \sum_i \alpha_i [y_i (w^\prime \phi(x_i) + b) + \zeta_i - 1] - \sum_i \beta_i \zeta_i\\
& \hbox{plug in } c = \alpha_i + \beta_i, \forall i\\
&= \frac{1}{2} ||w||^2 + \sum_i \alpha_i \zeta_i + \sum_i \beta_i \zeta_i - \sum_i \alpha_i [y_i (w^\prime \phi(x_i) + b) - 1] - \sum_i \alpha_i \zeta_i - \sum_i \beta_i \zeta_i\\
&= \frac{1}{2} ||w||^2 - \sum_i \alpha_i [y_i (w^\prime \phi(x_i) + b) - 1]\\
& \hbox{Therefore, no more β_i, which is helpful in solving.}\\
& \hbox{plug in } w = \sum_i \alpha_i y_i \phi(x_i)\\
&= \frac{1}{2} ||\sum_i \alpha_i y_i \phi(x_i)||^2 - \sum_i \alpha_i [y_i ((\sum_i \alpha_i y_i \phi(x_i))^\prime \phi(x_i) + b) - 1]\\
&= \frac{1}{2} ||\sum_i \alpha_i y_i \phi(x_i)||^2 - \sum_i \alpha_i [y_i ((\sum_i \alpha_i y_i \phi(x_i))^\prime \phi(x_i) + b) - 1]\\
& ADD LINE\\
& \hbox{because } b \hbox{ is constant and } \sum_i \alpha_i y_i = 0, \hbox{ that term is removed}\\
& ADD LINE\\
&= W(\alpha)\\
\end{align*}\end{split}\]

Step 6: Dual problem

\(\max \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j k(x_i, x_j)\)

s.t. \(0 \leq \alpha_i \leq c\) and \(\sum_i \alpha_i y_i = 0\)

Step 7: The KKT conditions are

	Stationarity

	\(\frac{\delta L}{\delta w} = 0 \xrightarrow{} w - \sum_i \alpha_i y_i \phi(x_i) = 0\)

	\(\frac{\delta L}{\delta b} = 0 \xrightarrow{} \sum_i \alpha_i y_i = 0\)

	\(\frac{\delta L}{\delta \zeta_i} = 0 \xrightarrow{} c - \alpha_i - \beta_i = 0\)

	Primal constraints

	\(y_i (w^\prime \phi(x_i) + b) - 1 + \zeta_i \geq 0\)

	\(\zeta_i \geq 0\)

	Dual constraints

	\(\alpha_i \geq 0\)

	\(\beta_i \geq 0\)

	Complementary slackness

	\(\alpha_i (y_i (w^\prime \phi(x_i) + b) - 1 + \zeta_i) = 0\)

	\(\beta_i \zeta_i = 0\)

Step 8: Solution to the primal problem

	\(w = \sum_i \alpha_i y_i \phi(x_i)\)

	\(b\) is obtained using the arguments discussed earlier (i.e. choose support vector and use to find \(b\))

	The classifier is

\[\begin{split}\begin{align*}
f(z) &= w^\prime \phi(z) + b\\
 &= \sum_i \alpha_i y_i \phi(x_i)^\prime \phi(z) + b\\
 &= \sum_i \alpha_i y_i k(x_i z) + b\\
\end{align*}\end{split}\]

So, a new data \(z\) is classified as class 1 if \(f(z) \geq 0\) and as class -1 if \(f(z) < 0\)

Remarks

From the KKT conditions, there are 3 possible casese for the values of \(\alpha\).

	\(\alpha_i = 0\) then \(\zeta_i = 0\), so there’s no penalty. A training point \(x_i\) is classified correctly.

	\(0 < \alpha_i < c\) then \(y_i (w^\prime \phi(x_i) + b) - 1 + \zeta_i = 0\) and \(\zeta_i = 0\). So, \(y_i (w^\prime \phi(x_i) + b) - 1 = 0\) and thus \(x_i\) is a support vector. These are support vectors on the margin. They are often called “unbounded” or “free”.

	\(\alpha_i = c\) then \(y_i (w^\prime \phi(x_i) + b) - 1 + \zeta_i = 0\) and \(\zeta_i \geq 0\) and so \(x_i\) is a support vector. These support vectors are called “bounded” support vectors. In this case, if \(0 \leq \zeta_i <1\), \(x_i\) is correctly classified. If \(\zeta_i \geq 1\), \(x_i\) is misclassified.

Example: Suppose we have 5 identically distributed (id) data points. \(x_1 = 1, x_2 = 2, x_3 =4, x_4=5, x_5=6\) with 1, 2, 6 as class 1 and 4,5 as class -1 (i.e. \(y_1=1, y_2=1, y_3=-1, y_4=-1, y_5=1\)).

Use a polynomial kernel of degree 2.

\(k(x,y) = (xy + 1)^2\)

Set \(c = 100\), a hyperparameter.

First, find the \(\alpha_i\) (\(i=1, 2, ..., 5\)) by looking at the dual problem

\[\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2\]

s.t. \(0 \leq \alpha_i \leq 100\) and \(\sum_i \alpha_i y_i = 0\)

By using a QP solver, we get \(\alpha_i = 0, \alpha_2 = 2.5, \alpha_3 = 0, \alpha_4=7.333, \alpha_5=4.833\)

Now, check the constraints. The constraints are satisfied.

The support vectors are \(x_2 = 2, x_4=4, x_5=6\).

The discriminant function is

\(f(z) = 2.5(1)(2z + 1)^2 + 7333(-1)(5z + 1)^2 + 4.833(1)(6z + 1)^2 + b\)

To find \(b\), we use any support vector.

\(f(2)=1\) or \(f(5)=-1\) or \(f(6)=1\)

All three give \(b=9\). If they are different, we would take the average.

\(f(z) = 0.666 z^2 - 5.333z + 9\)

[1]:

#TODO

Solution to the dual problem

Want to solve the SVM dual problem by using the QP solver.

Recall that the dual problem is

\[\max_\alpha \sum_i \alpha_i - \frac{1}{2} \sum_i \sum_j \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2\]

s.t. \(0 \leq \alpha_i \leq 100\) and \(\sum_i \alpha_i y_i = 0\)

In matrix form, this dual problem can be written as

\[\max_\alpha \vec{d}^\prime \vec{\alpha} - \frac{1}{2} \vec{\alpha}^\prime \vec{D} \vec{\alpha}\]

s.t. \(\vec{y}^\prime \vec{\alpha} = 0\) and \(\vec{I}_m \vec{\alpha} \geq 0\) and \(\vec{I}_m \vec{\alpha} \leq c\) which is equivalent to writing \(-\vec{I}_m \vec{a} \geq -c\) where \(\vec{d} = (1, 1,, 1)^\prime\), \(\vec{y} = (y_1, y_2, ..., y_m)\), \(\vec{\alpha} = (\alpha_1, \alpha_2, ..., \alpha_m)^\prime\), \(I_m\) is the identity matrix of rank \(m\) and \(D\) is the matrix \(D = [y_i y_j k(x_i, x_j)]^m_{i,j=1}\) with elements
\(D_{ij} = y_i y_j k(x_i, x_j)\).

This problem can be made a minimization problem by multiplying the expression by -1.

\[\min_x -\vec{d}^\prime \vec{x} + \frac{1}{2} \vec{x}^\prime \vec{D} x\]

s.t. \(\vec{A}^\prime \vec{x} \geq \vec{b}_v\)

Rewrite the SVM dual problem in quadprog format yields

\[\min_\alpha -\vec{d}^\prime \vec{\alpha} + \frac{1}{2} \vec{\alpha}^\prime \vec{D} \alpha\]

s.t. \(\vec{A}^\prime_m \vec{\alpha} \geq \vec{b}v\) where

$$A_m =

\begin{bmatrix}
y_1&y_2& ...& y_m\\
1&0&...&0\\
0&1&...&0\\
\vdots&0&\ddots&0\\
0&0&...&1\\

-1&0&...&0\\
0&-1&...&0\\
\vdots&0&\ddots&0\\
0&0&...&-1\\

\end{bmatrix}
$$

\[\begin{split}b_v = \begin{bmatrix}
0\\
0\\
\vdots\\
0\\
-c\\
-c\\
\vdots\\
-c\\
\end{bmatrix}\end{split}\]

After obtaining \(\alpha^\star\) (solution provided by quadprog)

\[w^\star = \sum_i \alpha^\star_i y_i \phi(x_i)\]

and

\[b^\star = y_j - \sum_i \alpha_i^\star y_i k(x_i, x_j)\]

where \(x_j\) is a support vector with label \(y_j\). We do not know \(\phi\) but you can input something.

Use average of the \(b^\star\) instead in practice.

For prediction, check

\[sign(\sum_i \alpha_i^\star y_i k(x_i, z) + w_0^\star)\]

Advantages and Disadvantages

Advantages

	SVM works relatively well when there is a clear margin of separation

	SVM is more effective in high dimensional space (side-effect of the curse of dimensionality)

	SVM is effective in cases where the number of dimensions is greater than the number of samples.

The graham matrix \(K = [k(x_i, x_j)]^n_{i,j = 1}\) which is an \(n \times n\) matrix. The \(D = [y_i y_j k(x_i, x_j)]^n_{i,j = 1}\) which is an \(n \times n\) matrix.

Disadvantages

	SVM algorithm is not suitable for large datasets because of the \(n \times n\) matrices.

	SVM does not perform well when the data has more noise, i.e. classes are overlapping

	SVM has no probability backing. As SVM classifier works by putting data points above and below the classifying hyperplane, there is no probabilistic explanation for the classification.

[]:

Check for linear separability
algorithm found online.

from scipy.optimize import linprog
import numpy as np

Classes with class names
dic = {1: '1', -1: '-1'}

for i in dic.keys():
 df["newTarget"] = np.where(df[df.columns[0]] == i, 1 , -1)

 from sklearn.preprocessing import StandardScaler
 sc = StandardScaler()
 tmp = df.iloc[:,[1,2,3,4]].values
 tmp = sc.fit_transform(tmp)

 xx = np.array(df.newTarget.values.reshape(-1,1) * tmp)
 t = np.where(df[df.columns[0]] == i, 1 , -1)

 #2-D array which, when matrix-multiplied by x, gives the values of
 #the upper-bound inequality constraints at x.
 A_ub = np.append(xx, t.reshape(-1,1), 1)

 #1-D array of values representing the upper-bound of each
 #inequality constraint (row) in A_ub.
 b_ub = np.repeat(-1, A_ub.shape[0]).reshape(-1,1)

 # Coefficients of the linear objective function to be minimized.
 c_obj = np.repeat(1, A_ub.shape[1])
 res = linprog(c=c_obj, A_ub=A_ub, b_ub=b_ub,
 options={"disp": False})

 if res.success:
 print('There is linear separability between {} and the rest'.format(dic[i]))
 else:
 print('No linear separability between {} and the rest'.format(dic[i]))

_images/nblinks_Common_interview_questions_5_0.png
Call:
Im(formula = Balance ~ Income + Gender + Rating + Income:Rating,

data = Credit)

Coefficients:
Estimate Std. Error t value Pr(>ltl)
(Intercept) -4.636e+02 3.419e+01 -13.560 < 2e-16 **x

Income -9.603e+00 7.728e-01 -12.426 < 2e-16 **x
GenderFemale 3.625e+00 1.618e+01 0.224 0.82282
Rating 3.795e+00 1.011e-01 37.520 < 2e-16 **x*
Income:Rating 3.397e-03 1.187e-03 2.862 0.00444 *x

Residual standard error: 161.6 on 395 degrees of freedom
Multiple R-squared: 0.8777,Adjusted R-squared: 0.8764
F-statistic: 708.5 on 4 and 395 DF, p-value: < 2.2e-16

_images/nblinks_ContextualBandits_1_0.png
Sequential Decision Making

$SA_t\in
\mathcal(A)_t

\mathcal{R}\d$$

Acton Environment
T \theta
A+

\eta_t$$

Real-World
Sequential Decision Making

$SA_t\in
\mathcal(A)_t

\mathcal{R}\d$$

next stej

Acton Envronment
Delaybuter Jst -

SSX_t, AL, f_\theta
D_tss (A +
\eta_t$$

_images/nblinks_Basic_neural_networks_3_0.png
X —
Wl |z =l x il
pll —

]

alll = o (311

)
ol
pll —

21—yl | pl2l

]

all = o (5]

]

L(am, y)

az?

dw[l], dplt

dzm

dw? ,dbl 12l

da?

_images/nblinks_Common_interview_questions_2_1.png
Dot:0.72, angle:10.39 Dot:0.22, angle:30.05 Dot:0.25, angle:34.98

07 07
04
06 06
05 05 03
04 04 =[x
03 03 02 Y
02 02
01
01 01
00 00 00

000 035 050 00 o0z 04 00 o025 050

_images/nblinks_Gradient_descent_1_0.png
Convex Non-Convex

local
minimum

global
minimizer minimum

_images/nblinks_bootstrapping_method_5_0.png
120

100

2

_images/nblinks_ContextualBandits_4_0.png
’
True Mean

Regret: 11.00 .
Timestep: 19 ® Approximated Mean
® Arm Vectors
O Chosen Arm
a
‘\\\ \\‘
\ o
| N
° PN

_images/nblinks_ContextualBandits_6_0.png
Regret: 17.40 .

Timestep: 146 ® Approximated Mean
© Arm Vectors
O Chosen Arm

_images/nblinks_intro_supervised_13_3.png
100

_images/nblinks_intro_supervised_6_0.png
Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary for the simulation example
of Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class,
this boundary can be calculated exactly (Ezercise 2.2).

_images/nblinks_intro_supervised_9_0.png

nav.xhtml

 Table of Contents

 		
 Portfolio website: Michael Hopwood

 		
 Projects

 		
 Exploring a link between network topology and active learning

 		
 An assessment of the value of principal component analysis for photovoltaic IV trace classification of physically-induced failures

 		
 Neural network-based classification of string-level IV curves from physically-induced failures of photovoltaic modules

 		
 Physics-based method for generating fully synthetic IV curve training datasets for machine learning classification of PV failures

 		
 pvOps: Improving Operational Assessments through Data Fusion

 		
 Electric Vehicle Detection

 		
 Generalized Low-Rank Models for Parking Garage Capacity Modeling

 		
 Notes (Beta)

 		
 Supervised Learning: An Introduction

 		
 Least-squares

 		
 Nearest neighbors

 		
 Bias-variance tradeoff

 		
 Linear regression vs. kNN

 		
 Interval prediction

 		
 Review of Conditional Expectation

 		
 Exercises

 		
 Discriminant Analysis

 		
 Overview

 		
 Details

 		
 Other notes

 		
 Hidden Markov Models (HMM)

 		
 Baum Welch

 		
 NN Learning

 		
 Useful Linear Algebra Identities

 		
 Gradient layout

 		
 Example on 1-layer NN

 		
 Network science

 		
 Components of complex systems

 		
 Complexity Theory

 		
 Anatomy

 		
 Small World

 		
 Universality

 		
 Barabasi-Albert (BA) Model

 		
 Generative Adversarial Networks (GANs)

 		
 Thought experiment: GANs for explainable AI?

 		
 Explainable AI

 		
 Summaries

 		
 ML & DL models

 		
 Sampling

 		
 Optimizers

 		
 A/B Tests

 		
 1. Set up the experiment

 		
 2. Run the test and record the success rate for each group.

 		
 3. Plot the distribution of the difference between the two samples.

 		
 4. Calculate the statistical power.

 		
 5. Evaluate how sample size affects A/B tests.

 		
 Attention

 		
 Common Questions

 		
 Vectors

 		
 Matrices

 		
 Linear regression

 		
 Dimensionality reduction

 		
 Statistics

 		
 Cross Entropy

 		
 Negative log likelihood

 		
 Regularization

 		
 Ridge

 		
 Lasso

 		
 Shrinkage effect

 		
 PCA

 		
 Partial Least Squares

 		
 Degrees of freedom

 		
 Lasso

 		
 Theoretical Statistics

 		
 Probability Theory

 		
 Transformations and Expectations

 		
 Families of Distributions

 		
 Multiple Random Variables

 		
 Properties of Random Sample

 		
 Principles of Data Reduction

 		
 Point Estimation

 		
 Bayes

 		
 Theoretical Statistics Questions

 		
 Is a pdf part of the exponential family?

 		
 Is a statistic complete?

 		
 Is a statistic sufficient?

 		
 Is a statistic unbiased?

 		
 Does a statistic converge in probability as n \xrightarrow{} \infty

 		
 Find unique best unbiased estimator of \theta.

 		
 Find MLE

 		
 Find MOM

 		
 Find CRLB (variance bound)

 		
 Find statistic at CRLB

 		
 Best unbiased of \tau(\theta)

 		
 Find an LRT of size 0.05

 		
 Derive level \alpha UMP test of H_0 and H_1.

 		
 Find a pivot quantity and its distribution

 		
 Find a pivotal interval of \theta w/ confidence coeff (1-\alpha)

 		
 Find smallest pivotal interval with CI (1-\alpha)

 		
 Natural Language Processing

 		
 Graph neural networks at scale

 		
 Introduction

 		
 GNN Scaling issues

 		
 Solutions

 		
 Recent solutions in literature

 		
 Contextual Bandits

 		
 Linear Bandits

 		
 Real-World Setting: Delayed Feedback

 		
 Conclusion

 		
 Neural Network Gaussian Process (NNGP)

 		
 Summary

 		
 Definition

 		
 Proposition

 		
 Short proposition

 		
 Proof

 		
 Acknowledgements

 		
 Helpful Resources

 		
 Cool Papers

_images/nblinks_inversion_method_10_0.png
040

035

030

025

020

_images/nblinks_inversion_method_12_0.png

_images/nblinks_intro_supervised_9_1.png
025

020

101103

005

000

100

2

Kneighbors

_images/nblinks_intro_supervised_9_3.png
X

_images/nblinks_inversion_method_6_0.png
it

_images/nblinks_inversion_method_8_0.png
ﬁ%"ﬁ

cosf =

sinf =

TRV B

_images/nblinks_inversion_method_1_0.png
100000

20000

0000

0000

20000

0 100000 200000 300000400000 500000600000 700000800000

_images/nblinks_inversion_method_3_0.png
200

175

150

125

100

o075

050

025

0004

_images/nblinks_model_summaries_1_0.png
Reconstructed

/| o

y=0 Discriminator,
SRR
04
A

S

Generator, 6

NG @

Noise

y=1

Original
data

_images/nblinks_model_summaries_4_401.png
— Generator loss.
— Discriminator Loss

W

0 % S 75 100 15 1Bo s 20

_images/nblinks_monte_carlo_integration_method_16_1.png
1.0

0.8

0.6

0.4

0.2

0.0

Integral: 0.997, Variance: 3.9838

— h(x)

—— Unif(0,10)

2.5

5.0

7.5

10.0

_images/nblinks_monte_carlo_integration_method_16_3.png
1.0

0.8

0.6

0.4

0.2

0.0

Integral: 1.0, Variance: 0.3584

— h(x)
—— Norm(5,1)

_images/nblinks_monte_carlo_integration_method_16_5.png
1.0

0.8

0.6

0.4

0.2

0.0

Integral: 1.198, Variance: 0.3509

— h(x)
—— Norm(5,0.7)

_images/nblinks_monte_carlo_integration_method_16_11.png
1.0

0.8

0.6

0.4

0.2

0.0

Integral: 1.0, Variance: 0.7679

— h(x)
—— 3. Cauchy

_images/nblinks_monte_carlo_integration_method_16_14.png
30

20

10

Integral: inf, Variance: nan

— h(x)
—— 3. Lognorm

_images/nblinks_nn_learning_3_1.png

_images/nblinks_revisiting_basic_nns_1_0.png
(21, 22) = quiteLU(wn @1 + wipz + 61) + ¢
f ReLU + +b)+ea

1 <0

IO
g1 >0

w11, wia)

Y

_images/nblinks_monte_carlo_integration_method_16_7.png
1.0

0.8

0.6

0.4

0.2

0.0

Integral: 1.0, Variance: 0.3337

— h(x)
—— Laplace(5,1)

_images/nblinks_monte_carlo_integration_method_16_9.png
1.0

0.8

0.6

0.4

0.2

0.0

Integral: 1.001, Variance: 1.0686

— h(x)
—— 3. Logistic

_images/nblinks_root_finding_methods_2_0.png
[—] Search area 5
H Search area 4
H Search area 3
E Search area 2 3
E Search area 1 3

8 2

_images/nblinks_root_finding_methods_4_0.png
Y

_images/nblinks_root_finding_methods_15_1.png
30

25

20

15

10

05

00

oo

02

04

06

08

10

_images/nblinks_root_finding_methods_9_1.png
o Bisection
o Newton

o secant x

_images/nblinks_svm_12_0.png
H
A . margin
A s/ width

(0,0)

_images/nblinks_root_finding_methods_7_1.png
© Bisection: x=1.0
© Newton: x=10
o Secant x=10

1 H 3 3 5

_images/nblinks_root_finding_methods_8_1.png
05

04

03

02

01

00

Bisection: x=5.0
Newton: x=10
Secant: x=10
GSS:x=171

_images/pvsc47_pca_ML.png
06
V/max(V)

=3 o
2 5 B
1/ max(l)

_images/nblinks_svm_2_0.png

_images/ouc2021_competition.png
—Ev
No EV

Aug 24 Aug 31 Sep 1
2020

_images/pvsc48_pvops.png
of O&M Tickets

2000

15000
15000 - @
o original asset % 1500 _— g
S
10000 = 10000 I Central Inverter = original asse
H Inverer el =100 ! s
8 Inverter Module 3 Tracker control unit
5000 o 5000; Inverter/String Inverter .2 I Tracking system
o B Sstring Inverter [
* *
0 0
inverter tracker
Remapped Asset Remapped Asset

Remapped Asset

_images/stanford_hackathon_parkingGarages.png
Garage B Daily Signals with Time-Varied Busy-ness Evaluation

100
80
60
—— measured capacity
* busy times
~— Busy day model
0
20
o

2019.06-03 2019.06-04 2019.06-05 201906-06 2019.06-07 2019.06-08

_static/icufn2021_activelearning.png
u(degree)
(degree)

14

12

10

08

06

04

— Ascending
— Descending

1.60 165 170 175 180 185 190 195
u(Featuresimilarity)
o(FeatureSimilarity)

_static/ieeeaccess_iv_nn.png
Sample 4 Fully-
ﬁ connected
s\ I layers
M\ Dmpou(+ [E
£x |8 \\ Convolutlon Convolutlon MaxPooling Flatten
—
(None,82,4) (None,76,256) (None,70,256) (None,30,256) (None,8960) (None,3)
Fig. 3. Neural network incorporating 1D CNN layers maps input features to a one-hot encoded output vector
Sample 7 Fully-
\ ﬁ connected
Ies Irs :> C layers
LsT™M Dropout
ers &
_/
(None,82,4) (None,100) (None,100) (None,3)

Fig. 4. Neural network incorporating a LSTM layer maps input features to a one-hot encoded output vector

Fully-
connected
layers

Dropout and
Concatenate

Four LSTM

layers

(None,4,10,8) (None,4,100) (None,400) (None,3)

Fig. 5. Multi-hcaded neural network assigns an LSTM layer to cach parameter

_static/file.png

_static/headshot_MH_2019_2.jpeg

_static/ieeeaccess_simulation_iv_nn.png
Simulated
Data

Measured
Data

Test
data

Supervised data (label given)

OuTPUT

SIMULATED INPUT

Baseline

Baseline

Partial
Soiling

S

ouTPUT

MEASURED INPUT

Baseline

B

Train model

PlY:X)

e

(.oploy for failu) 5
I \Cclnssmmlon

tasks
N~

Classification

_static/minus.png

_images/ieeeaccess_iv_nn.png
Sample 4 Fully-
ﬁ connected
s\ I layers
M\ Dmpou(+ [E
£x |8 \\ Convolutlon Convolutlon MaxPooling Flatten
—
(None,82,4) (None,76,256) (None,70,256) (None,30,256) (None,8960) (None,3)
Fig. 3. Neural network incorporating 1D CNN layers maps input features to a one-hot encoded output vector
Sample 7 Fully-
\ ﬁ connected
Ies Irs :> C layers
LsT™M Dropout
ers &
_/
(None,82,4) (None,100) (None,100) (None,3)

Fig. 4. Neural network incorporating a LSTM layer maps input features to a one-hot encoded output vector

Fully-
connected
layers

Dropout and
Concatenate

Four LSTM

layers

(None,4,10,8) (None,4,100) (None,400) (None,3)

Fig. 5. Multi-hcaded neural network assigns an LSTM layer to cach parameter

_images/ieeeaccess_simulation_iv_nn.png
Simulated
Data

Measured
Data

Test
data

Supervised data (label given)

OuTPUT

SIMULATED INPUT

Baseline

Baseline

Partial
Soiling

S

ouTPUT

MEASURED INPUT

Baseline

B

Train model

PlY:X)

e

(.oploy for failu) 5
I \Cclnssmmlon

tasks
N~

Classification

_images/headshot_MH_2019_2.jpeg

_images/icufn2021_activelearning.png
u(degree)
(degree)

14

12

10

08

06

04

— Ascending
— Descending

1.60 165 170 175 180 185 190 195
u(Featuresimilarity)
o(FeatureSimilarity)

_images/nblinks_Basic_neural_networks_1_0.png
Output

Input

_static/pvsc48_pvops.png
of O&M Tickets

2000

15000
15000 - @
o original asset % 1500 _— g
S
10000 = 10000 I Central Inverter = original asse
H Inverer el =100 ! s
8 Inverter Module 3 Tracker control unit
5000 o 5000; Inverter/String Inverter .2 I Tracking system
o B Sstring Inverter [
* *
0 0
inverter tracker
Remapped Asset Remapped Asset

Remapped Asset

_static/plus.png

_static/pvsc47_pca_ML.png
06
V/max(V)

=3 o
2 5 B
1/ max(l)

_static/stanford_hackathon_parkingGarages.png
Garage B Daily Signals with Time-Varied Busy-ness Evaluation

100
80
60
—— measured capacity
* busy times
~— Busy day model
0
20
o

2019.06-03 2019.06-04 2019.06-05 201906-06 2019.06-07 2019.06-08

